Lab Workbook Building a Complete Embedded System

Building a Complete Embedded System

Introduction

This lab guides you through the process of using Vivado and IP Integrator to create a complete Zynq
ARM Cortex-A9 based processor system targeting either the Zybo or ZedBoard Zynqg development
boards. You will use the Block Design feature of IP Integrator to configure the Zyng PS and add IP to
create the hardware system, and SDK to create an application to verify the design functionality.

Objectives

After completing this lab, you will be able to:
e Create an embedded system design using Vivado and SDK flow

e Configure the Processing System (PS)

e Add Xilinx standard IP in the Programmable Logic (PL) section

e Use and route the GPIO signal of the PS into the PL using EMIO

e Use SDK to build a software project and verify the design functionality in hardware.
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises eight primary steps: You will create a top-level project using Vivado, create the
processor system using the IP Integrator, add two instances of the GPIO IP, validate the design, generate
the bitstream, export to the SDK, create an application in the SDK, and, test the design in hardware.

Design Description

In this lab, you will design a complete embedded system consisting of the ARM Cortex-A9 PS, and two
standard GPIO IPs to connect to on-board LEDs and their corresponding switches. The following block
diagram represents the completed design (Figure 1).

AXI _
Interconnect AXld-Lite —_—
Block —'7
AXl4-Lit
e NI Suitches |
BTN

Figure 1 Completed Design

v www.xilinx.com/university Zyng 1-1
i‘ XI LINXS Xup@xilinx.com

© copyright 2014 Xilinx

Building a Complete Embedded System Lab Workbook

General Flow for this Lab

Step 1. Step 2: Step 3: Step 4:
Create a Create the Add Two Validate the

Vivado |:> System using Instances of |:> Design |:>
Project IP Integrator GPIO

Step 5: Step 6: Step 7: Step 8:
Generate the Export the Create an Testin

Bitstream Design to Application in Hardware
SDK SDK

Create a Vivado Project Step 1

1-1. Launch Vivado and create an empty project targeting the Zybo or ZedBoard
Zynq Evaluation and Development Kit and using the VHDL language.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2014.3.1 >
Vivado 2014.3.1

1-1-2. Click Create New Project to start the wizard. You will see the Create A New Vivado Project
dialog box. Click Next.

1-1-3. Click the Browse button of the Project Location field of the New Project form, browse to
c:\xup\adv_embedded\labs, and click Select.

1-1-4. Enter labl in the Project Name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

4~ New Project -
Project Hame T
Enter a name for your project and specify a directory where the project data files will be stored ﬁi}

Project name:

Project location: F:fxupfadv_embeddedflabs | |:|

Create project subdirectory

Project will be created at: C:/xup/adv_embedded/labs/labl

' < Back ” Next > Finish Cancel

Figure 2 Project Name Entry

Zynq 1-2 www.xilinx.com/university v
Xup@xilinx.com (A XI I—I Nxa

© copyright 2014 Xilinx

Lab Workbook Building a Complete Embedded System

1-1-5. Select the RTL Project option in the Project Type form, and click Next.

1-1-6. Select VHDL as the Target Language and Simulation Language in the Add Sources form, and
click Next.

1-1-7. Click Next two more times to skip adding IP or constraints.
1-1-8. In the Default Part form, using Specify Boards to filter via evaluation board type.
1-1-9. Click on the Board Vendor button.

1-1-10. Select either the Zybo or the ZedBoard Zynq Evaluation and Development Kit of the
appropriate Board Version based on the board you have and click Next.

It is important to select the correct revision of the board, as the FSBL created later will generate
different code depending on the board revision (i.e. silicon version) you are using. For the
Zedboard the revision is likely to be “C” or “D".

&4_:. MNew Project @

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. ‘
Select: &% Parts | Boards
4 Filter

Vendor; All -

Display Name: | Al -

Board Rey: Latest -

Reset All Filters
Search:
Display Mame Wendor Board Rev Part 1/0 Pin Count File Version
@ Zybo digilentinc.com b i xc72010cdg400-1 400 1.0 -
ﬂ MicroZed Board em.avnet.com f @ wc7z010clg400-1 400 i1
" ZedBoard Zyng Evauation and DevelopmentKitJem.avnet.comld |5

E Artix-7 AC701 Evaluation Platform xlllnx com f% wC7a200tfbos76-2 8675 L1 L
B Kintex-7 KC705 Evaluation Platform wiliny. com 1. 1 & wcTk325tFo900-2 200 1.1 I
@ virtex-7 VC707 Evaluation Platform wilinx. com L1 5 wcPux485tifg1761-2 1,761 L1
@ virtex-7 YC709 Evaluation Platform wilinx. com 1.0 S wcPuxs90tfgize1-2 1,761 1.4
@ virtex UltraScale VCIU107 Evaluation Board wilimx. com A @ wovu095-frvd1924-2-e-e51 1,924 1.2
@ 7YND-7 ZC702 Evaluation Board wilin. com 1.0 i xcT2020c0484-1 484 1.1 &
4 D =

Figure 3 Board Selection

1-1-11. Click Finish to create an empty Vivado project.

i' XI LINX Www.xilinx.qqm/university Zynqg 1-3

Xup@xilinx.com
© copyright 2014 Xilinx

Building a Complete Embedded System Lab Workbook

Creating the Hardware System Using IP Integrator Step 2

2-1.

Create block design in the Vivado project using IP Integrator to generate
the ARM Cortex-A9 processor based hardware system.

2-1-1. Inthe Flow Navigator, click Create Block Design under IP Integrator.
2-1-2. Name the block system and click OK.
2-1-3. Click on Add IP in the message at the top of the Diagram panel.
2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on ZYNQ7
Processing System entry to add it to the design.
2-1-5. Click on Run Block Automation and click OK to automatically configure the board presets.
gil‘;f_:. Run Block Automation @
Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right.
Q| =+ All Automation (1 out of 1 selected) Description
== L g: rocessing_system7_0
[Zyng7 block automation applies current board preset and generates external
Ig_Jl connections for FIXED_IOQ, Trigger and DOR. interfaces.
MOTE: Apply Board Preset will discard existing IP configuration - please uncheck
this box, if you wish to retain previous configuration.
Instance: fprocessing_system?_0
Options
Make Interface External: FIXED IO, DDR
Apply Board Preset: 7
Cross Trigger In: Disahle =
Cross Trigger Out: Disable -
oK | Cancel
Figure 4 Zynq System Configuration View
2-1-6. Double click on the Zynq block to open the Customization window for the Zynq processing

system.

A block diagram of the Zynqg PS should now be open, showing various configurable blocks of the
Processing System.

At this stage, designer can click on various configurable blocks (highlighted in green) and change
the system configuration.

Zynqg 1-4 www.xilinx.com/university (' XI LI NX

Xup@xilinx.com
© copyright 2014 Xilinx

Lab Workbook

Building a Complete Embedded System

ﬂ Re-customize IP

Page Mavigator 4
Zyng Block Design

P5-PL Configuration
Peripheral I/0 Pins
MIO Configuration
Clock Configuration
DDR Configuration
SMC Timing Calculation

Interrupts

ZYNQ7 Processing System (5.5)

iﬂ Documentation ﬁ Presets || IP Location @ Import XPS Settings

(558

/

Zyng Block Design Summary Report
e
— 7l 140 Penpherals oy
SPIO Setlings Application Procassor Unit (APU)
Banko 2L 201
e 2Cco
(150} I ARM Cortex o ARM Cortex ke
CAND System Level cPU CPU
|__CAN1 — Control Regs
UART 0 &b
o UART 1 " AXI
1 N | AcP
MUK |__GPIO GIo Snoop Control unit
WISy 500 + DMAS R | Slave
i -~ 501 ™™ chaad 1 512 KB L2 Cache and Controlier | Ports
USE 0
| usei oo 258 KE
ENET 0 Core Sight Interconnect SRAM
ENET 1 Centrsl Compoienl Y
Banki
M FLASH Memary - : $
(53:18) interfaces e— G| DAP |
o] [SerumoR Memory
MAN - el
QUAD 5P e | DEVE | Programmable DDR2/3,LPDOR2
T Logic to Memorny Controliler
SMIC Timing] Inter connect
Calculation
8 DMA Eyne HIEGE
2 |9 11011
Clock 4 5 e [T Processing System(PS
Reast | Generation ThE g ays!)
= ofi1[2]3 I DMA
0111 1203 ¢ gpugen 26P || 6P |cnamei | Config | B9 | Hign Pedormamee XADC
MID (EMIO) PE-PL AXI AXI AES/ AX| 320640 Siave
Clock Ports Master Stave SHA Ports
Ports Porta
Programmable Logic{PL)

Figure 5 Zynq System Configuration View

2-2. Configure the I/O Peripherals block to have UART 1 and GPIO support.
Route 1-bit wide GPIO_| port to the EMIO so it can be connected to a user

1O pin.

2-2-1. Click on the MIO Configuration panel to open its configuration form.

2-2-2. Expand the 10 Peripherals (and GPIO)

2-2-3. Deselect all the peripherals except UART 1 and GPIO. (Deselect ENET 0, USB 0, SD 0, and
Expand GPIO and deselect USB Reset and 12C Reset)

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2014 Xilinx

Zynqg 1-5

Building a Complete Embedded System Lab Workbook
ﬂ Re-customize IP
ZYNQ7 Processing System (5.5) ‘
“Documemaﬁon ﬁPresem BIP Location ﬁlmport XPS Settings
Page Mavigator < | | MIO Configuration Summary Report
Zynq Block Design 4= | Bank 0 1/0 Voltage| LveMOS 3.3v - Bank 11/0 Voltage |LveMOS 1.8v -
P5-PL Configuration lg Search: | Q-
Peripheral 1/0 Pins % Peripheral 10 Signal 10 Type Speed Pullup Direc
|M.IO Configuration E_; -- Memary Interfaces -
[+ IfO Peripherals
Clock Configuration o - [F] ENETO
DDR. Configuration m- [[] ENET1
SMC Timing Calculation -~ [0 usso
- [7] usB1
Interrupts B |:| .
B [0 sD1
m- [12c1
- [O] sPIO
W [sPri
B[] CAND
m- [[] cani
=) GPIO b
~ [7] EMIO GPIO {Width)
EMET Reset -
1 | +
i OK. I Cancel
Figure 6 Selecting UART 1 and GPIO Peripherals of PS
2-2-4. Route the PS section GPIO of a 1-bit width to the PL side pad using the EMIO interface by
doing the following:
0 Under GPIO, select the check-box for the EMIO GPIO (Width) to use the EMIO GPIO. Then
click in the right-column and select 1 as the width
@ [V] eProMD MIO -
EMIO GPIO (Width) Y vl-
Figure 7 Routing GPIO to PL
2-3. Deselect QSPl and TTC devices.
2-3-1. Inthe MIO Configuration panel, expand the Memory Interfaces and uncheck Quad SPI.
2-3-2. Expand the Application Processing Unit and uncheck the Timer O.
Zynq 1-6 www.xilinx.com/university v
Xup@xilinx.com i‘ XILINX

© copyright 2014 Xilinx

Lab Workbook Building a Complete Embedded System

Page Mavigator <« |MIDConﬁgura1ion

Bank 0 IO Voltage . -
Zynq Block Design & g€/ LVCMOS 3.3V

2 S h

PS-PL Configuration e
paa[

Peripheral 1/0 Pins = | Peripheral 0
B = Memory Interfaces

MIO Configuration :

. ©| =[] quad s1Fiash
Clock Configuration .] SRAM/NOR Flash

DDR Configuration & [] NAND Flash

[+ I/O Peripherals
|= Application Pracessor Unit

SMC Timing Calculation

Interrupts

----- [] watchdog
[+ Programmable Logic Test and Debug

Figure 8 Deselecting QSPI and Timer

2-3-3. Click OK.

The configuration form will close and the block diagram will be updated as shown below.

processing_system?_0

GPIO 0 &
DDR <&

DDR
FIXED 104 FIXED_IO

-
AL A ZYNQL T maacros fi

FCLK_CLKO
FCLK_RESETO_N

ZYNQY Processing System

Figure 9 ZYNQ7 Processing System configured block

2-4. Add one instance of GPIO and name it switches. Connect the block to the
Zynq.

2-4-1. Click the Add IP icon ﬂ!and search for AXI GPIO in the catalog.
2-4-2. Double-click the AXI GPIO to add an instance of the core to the design.

2-4-3. Click on the AXI GPIO block to select it, and in the Block properties tab, change the name to
switches.

2-4-4. Double click on the AXI GPIO block to open the customization window. Under Board Interface, for
GPIO, click on Custom to view the dropdown menu options, and select sws 8Bits for the
Zedboard or sws_4bits for the Zybo.

v www.xilinx.com/university Zynq 1-7
(‘ XI LINX’” Xup@xilinx.com

© copyright 2014 Xilinx

Building a Complete Embedded System Lab Workbook

2-4-5.

2-4-6.

2-4-7.

2-4-8.

2-5.

2-5-1.

2-5-2.

2-5-3.

2-5-4.

As the Zybo/Zedboard was selected during the project creation, and a board support package is
available for these boards, Vivado has knowledge of available resources on the board.

Click the IP Configuration tab. Notice the GPIO Width is set to 4 (Zybo) or 8 (Zedboard) and is
greyed out. If a board support package was not available, the width of the IP could be configured
here.

Click OK to finish configuring the GPIO and to close the Re-Customize IP window.

Click on Run Connection Automation, and select switches (which will include GPIO and
S_AXI)

Click on GPIO and S_AXI to check the default connections for these interfaces.

I "

g"‘ Run Ceonnection Automation @

Automatically make connections in your design by checking the boxes of the interfaces to connect.
Select an interface on the left to display its configuration options on the right.

Q. lE J Al Automation (2 out of 2 selected) Desaription

=a =[] £F switches

(=] L m Connect Board Part Interface to IP interface,
|$—J' LT I} 5_AXI

Interface: fswitches/GPIO

Options

Select Board Part Interface: | SWs_8Bits

| OK | | Cancel

Figure 10 Connection Automation for the GPIO (Zedboard)

Click OK to automatically connect the S_AXI interface to the Zynq GPO port (through the AXI
interconnect block), and the GPIO port to an external interface.

Notice that after block automation has been run, two additional blocks that are required to
connect the blocks, Proc Sys Reset, and AXI Interconnect have automatically been added to the
design.

Add another instance of GPIO, name the instance leds and connect it to the
Zynq.

Add another instance of the GPIO peripheral.
Change the name of the block to leds.

Double click on the leds block, and select leds 4bit (Zybo) or leds 8bit (Zedboard) for the GPIO
interface

Click on Run Connection Automation

Zyng 1-8 www.xilinx.com/university (' XI LI NX

Xup@xilinx.com
© copyright 2014 Xilinx

Lab Workbook Building a Complete Embedded System

2-5-5. Click leds, and check the connections for GPIO and S_AXI as before

2-5-6. Click OK to automatically connect the interfaces as before.
Notice that the AXI Interconnect block has the second master AXI (MO1_AXI) port added and
connected to the S_AXI of the leds.

2-6. Connect the EMIO to the BTN

2-6-1. Right-click on the GPIO_0 pin of the Zynq instance, and select Make External to create an
external port.

2-6-2. Select the newly created GPIO_0 port, and change the name to btn in its properties form.

At this stage the design should look like as shown below.

processing_system7_0_axi_periph
sl 2o Sl Sl ek |

| e so0_axt

switches

ACLK

ks _axt

GPIO=E "—D switches

rst_processing_system?_0_100M

slowest_sync_clk
ext_resat_in

bus_struct_reset[0:0]
—jaux_reset_in peripheral_meset[0:0]
=mb_debug_sys_mst interconned,_aresetn[0:0]

mib_resetf

5 axi_aclk

ARESETN

s_axi_aresetn

AXI GPIO

soo_aclk HO—E A
| ARESETN D%me‘m T

MOL_AXI 45
MOD_ACLK [

=]
MO0_ARESETN

leds

MOL_ACLK REC
—{dem_lacked I_aresetn[0:0] . B
MO1_ARESETN s ani_ack G103 ||} leds
Processar System Reset 5_axi_aresetn
AXT Interconnact
AXI GPIO
processing_system?_0
Gp1o_0 = || > bitr
oor+ | [DDR
- FIxeD_10 4 ||| [FIXED_IO
M_AXI_GPO_ACLK . i’ -
i ZYNO M_AXT_GPO o [
FOLK_CLKD
FCLK_RESETO_N
ZYNQ7 Processing System

Figure 11 The completed design

2-7. Verify that the addresses are assigned to the two GPIO instances and
validate the design for no errors.
2-7-1. Select the Address Editor tab and see that the addresses are assigned to the two GPIO

instances. They should look like as follows.

EaDiagram ¥ | /] Address Editor X

| cel Slave Interface Base Mame Offset Address Range High Address
E [=-{F processing_system7_0

iy =B Data (32 address bits : 4G)

i _ switches 5_AXI Reg 0x41200000 64+ O0x4120FFFF
o == leds 5_AXI Reg 0x41210000 64 ~ 0x4121FFFF

Figure 12 Assigned addresses

The addresses should be in the 0x40000000 to Oxbfffffff range as the instances are connected to
M_AXI_GPO port of the processing system instance.

2-7-2. Select Tools > Validate Design to run the design rule checker and to make sure that there are

no design errors.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2014 Xilinx

Zynqg 1-9

Building a Complete Embedded System Lab Workbook

2-7-3. Select File > Save Block Design to save the design.

2-8. Add the provided Xilinx Design Constraints file (lab1*.xdc), which contains
the BTN’s location constraint, to the project.

2-8-1. Board awareness is not being used for the EMIO button, so the pin constraints need to be
provided for this interface. Click the Add Sources button in the Flow Navigator.

2-8-2. Select Add or Create Constraints, and click Next.

2-8-3. The Add or Create constraints window will appear. Click Add Files... and browse to the
c:\xup\adv_embedded\sources\labl directory.

2-8-4. Selectthe labl_zedboard.xdc or labl_Zybo.xdc file, and click OK.

2-8-5. Click Copy constraints files into project, and click Finish to add the constraint file to the
project.

Generate the Bitstream Step 3

3-1. Create the top-level HDL of the embedded system. Add the provided
constraints file and generate the bitstream.

3-1-1. In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and
select Create HDL Wrapper. (Click OK when prompted to allow Vivado to automatically manage
this file)

Block Design - system

Sources — O @ =
QA= 2t hE

=I-{=7 Design Sources (1]

P Jsvstem (system.bd) (1))
-1 Constraints (1]
=-{ Simulation Sources (1]
- sim_1 (1]
Figure 13 Selecting the system design to create the wrapper file

3-1-2. Click OK when the wrapper file, system_wrapper.vhd, is generated and added to the hierarchy.
The wrapper file will be displayed in the Auxiliary pane.

Zyng 1-10 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2014 Xilinx

Lab Workbook

Building a Complete Embedded System

3-1-3.

3-1-4.

Block Design - system

Tu
b

Sources - 0O
A= meERE

—H57 Design Sources (1
;--._f_lj|,“a system_wrapper - STRUCTURE [s-.-sten'l_.-.-rapper
I system_i - systemn (systern.bd) (1]
+-4ll system - STRUCTURE (system.vhd) (2
' Constraints (1)
. -k constrs_1
= Simulation Sources (1]

i 1 b D

Hierarchy | IP Sources | Libraries | Compile Order

£ Sources | | Design Hierarchy
Figure 14 Design Hierarchy View

Click on the Generate Bitstream in the Flow Navigator pane to synthesize and implement the

design, and generate the bitstream. (Save if prompted.)

When the bitstream generation is complete, click Cancel.

Export the Design to the SDK

Step 4

4-1.

4-1-1.

4-1-2.

Exporting the design and launch SDK

Export the hardware configuration by clicking File > Export > Export Hardware. Tick the box to

include the bitstream and click OK.

Expart hardware platform for software development
tools

[&

Export to: | &0 <Local to Project= -

g"‘ Export Hardware @

Ok] I Cancel

Figure 15 Exporting the hardware

Launch SDK by clicking File > Launch SDK and click OK

(Launching SDK from Vivado will automatically load the SDK workspace associated with the
current project. If launching SDK standalone, the workspace will need to be selected.)

& XILINX.

Xup@xilinx.com
© copyright 2014 Xilinx

www.xilinx.com/university

Zynq 1-11

Building a Complete Embedded System Lab Workbook

Generate an Application in SDK Step 5

5-1. Generate a board support package project with default settings and default
software project name.

SDK should open and automatically create a hardware platform project based on the configuration
exported from Vivado. A board support package and software application will be created and associated
with this hardware platform.

5-1-1. Select File > New > Board Support Package

P)

@ Mew Board Support Package Project = @
Xilinx Board Support Package Project
Create a Board Support Package, "r
Project name: standalone_bsp_0
Use default location
Chaxuphadv_embedded\labs\labl\labl .sdk\standalone_bsp 0 Browse...
default
Hardware Platform: [system_wrapper_hw_platform_ﬂ v] [Ngw]
CPL: [ps?_cortexag_ﬂ v]
Standalone is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts and exceptions as well as the basic features of a
hosted envircnment, such as standard input and cutput, profiling, abort and exit.
oy
'\‘?_,.' Einish l [Cancel

Figure 16 Create BSP

5-1-2. Click Finish with the default settings selected (using the Standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

5-1-3. Click OK to accept the default settings as we want to create a standalone_bsp_0 software
platform project without any additional libraries.

5-1-4. The library generator will run in the background and will create the xparameters.h file in the
labl.sdk\standalone_bsp_O\ps7_cortexa9 O\include directory.

Zynqg 1-12 www.xilinx.com/university v
Xup@xilinx.com 24 XI I—INXa

© copyright 2014 Xilinx

Lab Workbook Building a Complete Embedded System

5-2.

5-2-1.

5-2-2.

5-2-3.

5-2-4.

5-2-5.

5-2-6.

5-2-7.

5-2-8.

Create an empty application project, named labl, and import the provided
lab1l.c file.

Select File > New > Application Project.
In the Project Name field, enter lab1 as the project name.

Select the Use existing option in the Board Support Package field and then click Next.

New Project l | =l H&I
Application Project v ﬁ
Create a managed make application project.

Project name:l Iab}l

Use default location

Ch\xuphadv_embedded\labshlabl\labl.sdik\SDK\SDK_Export\labl Browse...

default -

Target Hardware

Hardware Platform [hw_platform_{} -]

Processor [ps?_cortexag_{} -]

Target Software

OS Platform [standalone VI

Language @C ©)C++

Board Support Package () Create New

@ Use existing |standalone_bsp_0 -]

Figure 17 Create a Blank Application Project

Select the Empty Application template and click Finish.

The labl project will be created in the Project Explorer window of SDK.

Select lab1/src directory in the project view, right-click, and select Import.

Expand the General category and double-click on File System.

Browse to the c:\xup\adv_embedded\sources\lab1l folder.

Select the labl.c source file and click Finish.

v www.xilinx.com/university Zynqg 1-13
i‘ XI LINXS Xup@xilinx.com

© copyright 2014 Xilinx

Building a Complete Embedded System Lab Workbook

A snippet of the source code is shown in the following figure. The code reads from the switches,
and writes to the LEDs. The BTN is read, and written to the LED.

#include "xparamsters.h™
#include "xgpic.h™
#include "xgpiops.h™

static XGpioPs psGpicInstancePtr:
static int iPinNumber = 7; /*Led is connected to MID pin 7 on both Zybo and Zyng*/

int main (wvoid)

{

HGpio aw, led:

int i, pshb_check, sw_check:;
static XGpic GPIOInstance_Prr:
XGpioPFs_Config*GpioConfigPtr;
int xStatus:

int iPinNumberEMIO = 54

132 uPinDirectionEMIO = 0x0;
u32 uPinDirection = Oxl:

xil_printf("-- Star

ot

// BXI GPIO switches Intialization
¥Gpio Initialize (&sw, XPFRAR SWITCHES DEVICE_ID) :

// BRI GPIC leds Innializasion
XGpio Initialize (&led, XPRR LEDS DEVICE_ID) :

// PS5 GPIO ializatio
GpiocConfigPtr = XGpioFs_LookupConfig(XFAR_PS57_GFIO_O0_DEVICE_ID) :
if(GpicConfigPtr = HNULL)
return XE3T_FAILURE:
xStatus = XGpioPs_Cfglnitialize (&psGpiolnstancePtr,
GpiocConfigPtr,
GpiocConfigPtr->Baselddr) ;
if(X5T_SUCCE3S != x3tatus)
print (" E3 GFPIC I
S/ /PS GPIO pin setting to Output

XGpioPs_SetDirectionPin (&psGpiocInstancePtr, iPinNumber,uPinDirection):
XGpioPs_SetfutputEnablePin(&psGpioInstancePtr, iPinNumber,1):
S/EMIO PIN Setting to Input port
XGpioPs_SetDirectionPin(&paGpicInatancePtr,

iPinMurkerEMIC, uPinDirectionEMIO) ;
XGpioPs_SetOutputEnablePin(&psGpiocInstancePtr, iPFinNumberEMIO,O)

¥il_printf({"--
xil_printf("--
x¥il printf("-—-

]
H
-
n

while (1)
{
aw_check = XGpio DiscreteRead(&sw, 1):
¥Gpio_DiscreteWrite (&led, 1, sw_check):
pshk check = XGpicPs_PReadPin(&psGpiclnstancePtr, iPinNumberEMIO) »
XGpioPs_WritePin(&psGpiclnstancePtr, iPinNumber,pshk_check) :
if (aw_check=0xFF
break:

xil printf("-- End of Program —-\r\n"):;
return 0;

}

Figure 18 Snippet of Source Code

Zyng 1-14 www.xilinx.com/university v
Xup@xilinx.com (A XI LINXa

© copyright 2014 Xilinx

Lab Workbook Building a Complete Embedded System

Test in Hardware Step 8

6-1. Connect and power up the board. Establish serial communications using
the SDK’s Terminal tab. Verify the design functionality.

6-1-1. Connect and power up the board.
6-1-2. Select the = Terminal tap. If it is not visible then select Window > Show view > Terminal.

6-1-3. Click on T and select appropriate COM port (depending on your computer), and configure the
terminal with the parameters as shown below.

Terminal Settings &J

View Settings:

View Title: Terminal 1

Connection Type:

ISeriaI

Settings:
Port: COM11
Baud Rate: 115200
Data Bits:
Stop Bits:

Parity:

iI‘iI‘l\II‘I\II
1 L]

Flow Control:

Timeout (sec): 5

[OK l l Cancel ‘

Figure 19 SDK Terminal Settings
6-1-4. Select Xilinx Tools > Program FPGA and then click the Program button.

6-1-5. Select the lab1 project in the Project Explorer, right-click and select Run As > Launch on
Hardware to download the application, execute ps7_init, and execute lab1l.elf.

6-1-6. You should see the following output on the Terminal console.

-- Start of the Program --

-- Press BTNR (Zedboard) or BTM3 (Zybo) to see the LED light --
-- Change slide switches to see corresponding output on LEDs --
-- Set slide switches to all OMN to exit the program --

Figure 20 SDK Terminal Output
6-1-7. Press the BTNR (Zedboard) BTN3 (Zybo) and see the LED light up.

6-1-8. Change the slide switches and see the corresponding LED turning ON and OFF.

v www.xilinx.com/university Zynq 1-15
i‘ XI LINXS Xup@xilinx.com

© copyright 2014 Xilinx

Building a Complete Embedded System Lab Workbook

6-1-9. Set the slide switches to the ON position to exit the program.

Click the Terminate button (®) on the Console ribbon bar to terminate the execution if you want
to terminate the application at anytime before setting the slide switches to the ON position..

6-1-10. Close SDK and Vivado programs by selecting File > Exit in each program.

6-1-11. Turn OFF the power to the board.

Conclusion

In this lab, you created an ARM Cortex-A9 processor based embedded system using the Zynq device for
the Zybo/ZedBoard. You learned how to route the GPIO connected to the PS section to the FPGA (PL)
pin using the EMIO. You instantiated the Xilinx standard GPIO IP to provide input and output functionality.
You also saw that whenever the dedicated pins are not used, you need to provide pin constraints through
the user constraints file (xdc).

You created the project in Vivado, created the hardware system using IPI, implemented the design in
Vivado, exported the generated bitstream to the SDK, created a software application in the SDK, and
verified the functionality in hardware after programming the PL section and running the application from
the DDR memory.

Zyng 1-16 www.xilinx.com/university v
Xup@xilinx.com i‘ XI I—I Nxa

© copyright 2014 Xilinx

