Creating a custom IP block in Vivado
Using ZedBoard: A Tutorial
Embedded Processor Hardware Design
February 8th 2015.

[bookmark: _Toc240469726]Introduction
This tutorial will guide you through the process of using Vivado and IP Integrator to create a custom AXI IP block in Vivado and modify its functionality by integrating custom VHDL code. We will be using the Zync SoC and ZedBoard as a hardware platform. For simplicity, our custom IP will be a multiplier which our processor will be able to access through register reads and writes over an AXI bus.

The multiplier takes in two 16-bit unsigned inputs and then it will output one 32 bit unsigned value. A single 32 bit writes to the IP will contain the two 16-bit inputs, separated by the lower and higher 16 bits. A single 32 bit read from the peripheral will contain the result from the multiplication of the two 16-bit inputs. The design is simple but it is a good example of integrating your own code into an AXI IP block.

Objectives
After completing this tutorial, you will be able to:
Create an embedded system design using Vivado and SDK flow
Configure the Processing System (PS)
Add a custom IP in the Programmable Logic (PL) section
Use SDK to build a software project and verify the functionality in hardware.

Procedure
This lab is separated into steps that consist of general overview statements that provide information on the detailed instructions that follow. Follow these detailed instructions to progress through the tutorial.
This tutorial comprises three stages (each consisting of steps): You will create a top-level project using Vivado, create the processor system using the IP Integrator, add two instances of the GPIO IP, validate the design, generate the bitstream, export to the SDK, create an application in the SDK, and, test the design in hardware. You will then be able to profile the application and produce statistics that will help you understand the main bottlenecks of your application.
Requirements
The following is needed in order to follow this tutorial:
· Vivado w/ Xilinx SDK (tested, version 20144)
· Zedboard (tested, version D)
[bookmark: _Toc240469727]Part 1: Building a Zynq-7000 Processor Hardware
[bookmark: _Toc240469728]Introduction
In this part of the tutorial you create a Zynq-7000 processor based design and instantiate IP in the processing logic fabric (PL) to complete your design. Then you take the design through implementation, generate a bitstream, and export the hardware to SDK.
If you are not familiar with the Vivado Integrated Development Environment Vivado (IDE), see the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).
[bookmark: _Toc240469729]Step 1: Start the Vivado IDE and Create a Project
1. Start the Vivado IDE (FIGURE 1) by clicking the Vivado desktop icon or by typing vivado at a terminal command line.

[image:]Figure 1: Getting Started Page

2. From the Getting Started page, select Create New Project. The New Project wizard opens (FIGURE 2).
3. Click Next

[image:]Figure 2: Create New Project Wizard

4. In the Project Name dialog box, type the project name and location. Ensure that Create project subdirectory is checked, and then click Next.
5. In the Project Type dialog box, select RTL Project, then click Next.
6. In the Add Sources dialog box, ensure that the Target language is set to VHDL, then click Next.
7. In the Add Existing IP dialog box, click Next.
8. In the Add Constraints dialog box, click Next.
9. In the Default Part dialog box select Boards and choose “ZedBoard Zynq Evaluation and Development Kit”. Make sure that you have selected the proper Board Version to match your hardware because multiple versions of hardware are supported in the Vivado IDE. Click Next.
10. Review the project summary in the New Project Summary dialog box before clicking Finish to create the project.

[bookmark: _Toc240469730]Step 2: Create the Base Processing System
1. In the Flow Navigator, select Create Block Design.

[image:]Figure 3: Create Block Design from Flow Navigator

2. In the Create Block Design popup menu, specify a name for your IP subsystem design.

 [image:]

Figure 4: Create Block Design Dialog Box

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

[image:]
Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

[image:]
Figure 6: Add IP Link in IP Integrator Canvas
The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter on the keyboard.

[image:]
Figure 7: The IP Integrator IP Catalog

Because you selected the ZedBoard when you created the project, the Vivado IP integrator configures the design appropriately.

In the Tcl Console, you see the following message:

create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.2 processing_system7_1
INFO: [PS7-6] Configuring Board Preset zed. Please wait
There is a corresponding Tcl command for all actions performed in the IP integrator block diagram. Those commands are not shown in this document. See the Tcl Console for information on those commands.
6. In the IP integrator diagram header, click Run Block Automation.

[image:]
Figure 8: Run Block Automation on Zync
The Run Block Automation dialog box opens, stating that the FIXED_IO and DDR interfaces will be created for the Zynq core.

7. Click OK.

[image:]
Figure 9: Zync7 Run Block Automation Dialog Box

After running block automation on the Zynq processor, the IP integrator diagram should look as follows:
[image:]
Figure 10: Zynq Processing System after Running Block Automation
8. We will now reconfigure the ZYNQ7 Processing System. Double click on the ZYNC block diagram.
9. The Re-customize IP window will open as seen in Figure 11.

[image:]

Figure 11: Re-customizing the ZYNQ Processing System
10. Click on the MIO Configuration panel to open its configuration form.
11. Expand the IO Peripherals on the right.
12. Uncheck ENET 0, USB 0, and SD 0, GPIO (GPIO MIO), leaving UART1 selected.
13. In the MIO Configuration panel, expand the Application Processing Unit and uncheck the Timer 0.
14. From the Page Navigator, select “Clock Configuration” and open the “PL Fabric Clocks” tree as seen in Figure 12.

[image:]
 Figure 12: Clock Configuration
15. Make sure that the FCLK_CLK0 is enabled (ticked) and that it is set for a frequency of 100 MHZ. This will be our AXI clock.
16. Now from the Page Navigator, select “PS-PL Configuration” and open the “GP Master AXI Interface” tree.
17. Tick the “M AXI GP0 interface” checkbox and enable it as seen in Figure 13.
 [image:]
 Figure 13: Clock Configuration
18. Now click “OK” to close the Re-customize IP window.
19. We must now connect the FCLK_CLK0 output to the AXI clock input. To do this, click on the FCLK_CLK0 output and then click on the M_AXI_GP0_ACLK input. This will trace a wire between the pins and make the connection as seen in Figure 14.
Figure 13: Clock Configuration [image:]
 Figure 14: processing_system7_0 connection
[bookmark: _Toc240469733]Part 2: Create the Custom IP
Introduction
In this part of the tutorial you will create a custom IP by using the “Create and Package IP” facility in Vivado.
1. With the base Vivado project opened, from the menu select Tools Create and package IP. A new window will appear as seen in Figure 15.

 [image:]

 Figure 15: Create and Package New IP
2. When the “Create and Package IP” wizard opens. Click “Next”.
3. On the next page (Figure 16), select “Create a new AXI4 Peripheral. Click “Next”.

[image:]
 Figure 16: Create a new AXI4 Peripheral
4. Now you can give the peripheral an appropriate name, description and location as seen in Figure 17. Click “Next”.

[image:]
 Figure 17: Peripheral Details

5. On the next screen we can configure the AXI bus interface. For the multiplier we will use AXI lite, and it will be a slave to the PS, so we will stick to the default values shown on Figure 18.
[image:]
 Figure 18: Add Interface

6. On the last page, select “Edit IP” and click “Finish” as seen in Figure 19.

 [image:]
 Figure 19: Create&Edit IP

7. At this point, the peripheral that has been generated by Vivado is an AXI Lite Slave that contains 4 x 32 bit read/write registers (as seen in Figure 20). We want to add our multiplier code to the IP and modify it so that one of the registers connects to the multiplier inputs and another to the output.

[image:]
 Figure 20: Summary of IP
Add the multiplier code to the peripheral
You can find the multiplier code on the web site of ENG3050. Download the “multiplier.vhd” file and save it somewhere, the location is not important for now.
Note that these steps must be done in the Vivado window that contains the peripheral we just created (not the base project that contains the PS).
1. From the Flow navigator, click “Add Sources”. In the window that appears (Figure 21) select “Add or Create Design Sources” and click “Next”.

[image:]
 Figure 21: Add Sources

2. On the next window, click “Add Files”

[image:]

 Figure 22: Add Files

3. Browse to the “multiplier.vhd” file, select it and click “OK”.
4. Make sure you tick “Copy sources into IP directory” and the click “Finish”

[image:]

 Figure 23: Choosing the VHDL Code

5. The multiplier code is now added to the peripheral; however we still have to instantiate it and connect it to the registers.

Modify the Peripheral
At this point, your Project Manager Sources window should like the following:

 [image:]
 Figure 24: Project Manager

1. Open the branch “my_multiplier_v1_0-arch_imp”
2. Double click on the “my_multiplier_v1_0_S00_AXI_INST” file to open it.
3. The source file should be open in Vivado. Find the line with the “begin” keyword and add the following code just above it to declare the multiplier and output signal:

[image:]

4. Now find the line that says “ – Add user logic here” and add the following code below it to instantiate the multiplier:

[image:]

5. Find this line of code “reg_data_out <= slv_reg1”; and replace it with “reg_data_out <= multiplier_out”.
6. In the process statement just a few lines above, replace “slv_reg1” with “multiplier_out”.
7. Save the file
8. You should notice that the multiplier.vhd” file has been integrated into the hierarchy because we have instantiated it from within the peripheral.

 [image:]
 Figure 25: Sources Hierarchy

9. Click on “IP File Groups” in the Package IP tab of the Project Manager.

[image:]
 Figure 26: IP Groups

10. Click the “Merge changes from IP File Group Wizard” link.
11. The “IP File Groups” should now have a tick.

[image:]

 Figure 27: IP File Groups

12. Now Click “Review and Package IP” as seen in Figure 28.

[image:]
 Figure 28: Review and Package IP

13. A final window will appear as seen in Figure 29. Press “OK”
 [image:]
 Figure 29: Close the Project

The peripheral will be packaged and the Vivado window for the peripheral should be automatically closed. We should now be able to find our IP in the IP catalog. Now the rest of this tutorial will be done from the original Vivado window.

Add the IP to the Design

1. Click the “Add IP” icon

2. Find the “my_multiplier” IP and double click it.

[image:]
 Figure 30: Search for my_multiplier

3. The block should appear in the block diagram and should see the message “Designer Assistance available. Run Connection Automation”. Click the connection automation link,

[image:]

 Figure 31: Run Connection Automation

4. In the window that appears, set Clock connection to “Auto” and click “OK”.

[image:]
 Figure 32: Run Connection Automation (Auto)

5. The new block diagram should like this.

[image:]
 Figure 33: The Final Block Diagram

6. Validate the design (choose Tools Validate Design).
Generate HDL Design Files
You now generate the HDL files for the design.

1. In the Source window, right-click the top-level subsystem design and select Generate Output Products (FIGURE 34). This generates the source files for the IP used in the block diagram and the relevant constraints file.

[image:]
Figure 34: Generate Output Products Option

2. The Manage Output Products dialog box opens. Click OK.

[image:]

3. In the Sources window, select the top-level subsystem source, and select Create HDL Wrapper to create an example top-level HDL file (FIGURE 35).

4. Click OK when the Create HDL Wrapper dialog box opens.

[image:]
Figure 35: Create HDL Wrapper
[bookmark: _Toc240469734]

Implement Design and Generate Bitstream
1. In Flow Navigator, click Generate Bitstream to implement the design and generate a BIT file.

Note: If the system requests to re-synthesize the design before implementing, click No. The previous step of saving the constraints caused the flow to mark synthesis out-of-date. Ordinarily, you might want to re-synthesize the design if you manually changed the constraints, but for this tutorial, it is safe to ignore this condition (FIGURE 36).

[image:]
Figure 36: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click Yes.

[image:]
Figure 37: No Implementation Results Available Dialog Box

3. After the design implementation, click Open Implemented Design, (FIGURE 38).
[image:]
Figure 38: Bitstream Generation Completed
4. You might get a warning that the implementation is out of date. Click Yes.

[image:]
Figure 39: Implementation Is Out-of-Date Dialog Box

[bookmark: _Toc240469735]Export Hardware to SDK
In this step, you export the hardware description to SDK. You use this in Part 2.
The IP integrator block diagram, and the Implemented design, must be open to export the design to SDK.

IMPORTANT: For the Digilent driver to install, you must power on and connect the board to the host PC before launching SDK.

[bookmark: _Toc240469736]Export to SDK
1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 40).

[image:]
Figure 40: IP Integrator - Open Block Design
Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 41).
[image:]
Figure 41: Export Hardware for SDK
The Export Hardware for SDK dialog box opens, ensure that Export Hardware, Include Bitstream, and Launch SDK are checked (FIGURE 42).

[image:]
Figure 42: Export Hardware for SDK

[bookmark: _Toc240469737]Part 3: Build Zynq-7000 Processor Software
In this portion of the tutorial you will test the multiplier by printing results to the terminal via the UART (serial port).

[bookmark: _Toc240469738]Step 1: Start SDK and Create a Software Application
1. If you are doing this lab as a continuation of Part 1 then SDK should have launched in a separate window (if you checked the Launch SDK option while exporting hardware).

2. From the SDK window Select File > New > Application Project (FIGURE 43).
[image:]
Figure 43: File->New->Application Project
New Project dialog box opens

3. In the Project Name field, type TestMultiplier, and click Next (FIGURE 44).

[image:]
Figure 44: SDK Application Project

4. From the Available Templates, select Hello World (FIGURE 45) and click Finish.

[image:]
Figure 45: SDK New Project Template
When the program finish compiling, you will see the following (FIGURE 46).

[image:]
Figure 46: SDK Message

[bookmark: _Toc240469739]Step 2: Modify the Software Application
Now, you can either run the hello world application on the ZedBoard or test the multiplier!!. If you want to test the multiplier then you need to modify the software application.

1. From the Project Explorer, open the “TestMultiplier/src” folder. Open the “helloworld.c” source file.
2. Replace all the code in this file with the following code shown in Figure 47 (available on the webpage)

[image:]

Figure 47: SDK Message

Step 3: Run the code on the FPGA

1. Download the bitstream into the FPGA by selecting Xilinx Tools > Program FPGA (FIGURE 48).
[image:]
Figure 48: Program FPGA
This opens the Program FPGA dialog box.

2. Ensure that the path to the bitstream that you created is correct and then click Program.

Note: The DONE LED on the board turns blue if the programming is successful.

3. Connect a terminal to see the results.

4. Choose Run Run Configurations. A new window will appear as seen in Figure 49.
[image:]
Figure 49: Run Configuration

5. Double Click on Xilinx C/C++ application (GDB) and a new configuration will be created along with its setting menu.
6. Make sure you have an application associated with your run configuration.
7. Click on Run.
8. You will see the following results on the terminal (Figure 50)
[image:]
[bookmark: _GoBack]Figure 50: Run Configuration
	32
	VIVADO TUTORIAL

	VIVADO TUTORIAL
	31

image2.png
& New Project =]

Create a New Vivado Project
“This wizard will guide you through the creation of a new project
To create a Vivado project you will need to provide a name and a location for your project

files. Next, you will specify the type of flow you'l be working with. Finally, you will specify
Your project sources and choose a default part.

To continue, click Next.

< Back

=

image3.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 13
UG940 (v 2013.2) June 19, 2013

Step 2: Create an IP Integrator Design
1. In the Flow Navigator, select Create Block Design.

Figure 3: Create Block Design from Flow Navigator

2. In the Create Block Design popup menu, specify a name for your IP subsystem design.

Figure 4: Create Block Design Dialog Box

http://www.xilinx.com/

image4.jpg
Please specify name of block design. E

Desgnrame: [swway

Dectory: 5 <Local o Project> ——
Specify source set: [Design Sources. -

[| oo

image5.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 14
UG940 (v 2013.2) June 19, 2013

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter
on the keyboard.

Figure 7: The IP Integrator IP Catalog

Because you selected the ZC702 board when you created the project, the Vivado IP
integrator configures the design appropriately.

http://www.xilinx.com/

image6.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 14
UG940 (v 2013.2) June 19, 2013

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter
on the keyboard.

Figure 7: The IP Integrator IP Catalog

Because you selected the ZC702 board when you created the project, the Vivado IP
integrator configures the design appropriately.

http://www.xilinx.com/

image7.png
(2 matches)

Search: | Q- zynq
=T <5

Name Version AXH Status. License Vendor

4 ZNQ7 Processing System 52 AXi4-Stream, AXI4 Production Included Xlimx, Inc.

& ZYNQ7 Processing System BFM 10 A4 Pre-prod... Purchase Xilin, Inc.

< [s

Select and press ENTER or drag and drop, ESC to cancel

image8.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 15
UG940 (v 2013.2) June 19, 2013

In the Tcl Console, you see the following message:
create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.2
processing_system7_1

INFO: [PS7-6] Configuring Board Preset zc702. Please wait

There is a corresponding Tcl command for all actions performed in the IP integrator block
diagram. Those commands are not shown in this document. See the Tcl Console for
information on those commands.

6. In the IP integrator diagram header, click Run Block Automation.

Figure 8: Run Block Automation on Zynq

The Run Block Automation dialog box opens, stating that the FIXED_IO and DDR interfaces
will be created for the Zynq core.

7. Click OK.

Figure 9: Zynq7 Run Block Automation Dialog Box

http://www.xilinx.com/

image9.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 15
UG940 (v 2013.2) June 19, 2013

In the Tcl Console, you see the following message:
create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.2
processing_system7_1

INFO: [PS7-6] Configuring Board Preset zc702. Please wait

There is a corresponding Tcl command for all actions performed in the IP integrator block
diagram. Those commands are not shown in this document. See the Tcl Console for
information on those commands.

6. In the IP integrator diagram header, click Run Block Automation.

Figure 8: Run Block Automation on Zynq

The Run Block Automation dialog box opens, stating that the FIXED_IO and DDR interfaces
will be created for the Zynq core.

7. Click OK.

Figure 9: Zynq7 Run Block Automation Dialog Box

http://www.xilinx.com/

image10.png
DR
XED_IO

VNG7 Processing System

image11.jpg
ZYNQY Processing System (5.5)

9 Documentaton 5 Presets (15 1 Location 5 Import S ettings

Page Navigator «/| zyna Block Design Sunmary Report
1o Persnaras
P21 Confguration Aopcaton ProcsssorUnit (APU)
Peripheral 1/0 Pins.
Ao Coter Ho A cotec ko
10 Configuration i =
ock Configuration
DR Configuration S0 Contot
51218 L2 Caneans Cortoser
SmC Timing Cauaton
e
Interrupts. s
| eyt | |
=
—

Processing System(PS)

e
R 1

Programmable Logic(PL)

[o] _caw |

image12.jpg
Re

I3

ZYNQ7 Processing System (5.5)

9 Documentaton 5 Presets (15 1 Location 5 Import S ettings

Page Navigator «|| cock configuration Summary Report
2ynqBlockDesion . Baskc Coding | Advanced Clockng
P21 Confguration InputFrequency (41235353353 CPU Clock Ratio[6:2:1 <

Peripheral 1/0 Pins.
10 Confguration | CockSource | Requesied Frequene.. | Acksl Frequency0i | Range(te)
08 Contiuraton
|—v [ioo00000] 10.000000 0.100000 : 250.000000
S4C Trming Colaaton 150.000000 150.000000 0.100000 : 250.000000
[— Ton = s0.000000 0.100000 : 250.000000
on » s0.000000 0.100000 : 250.000000

image13.jpg
ZYNQ7 Processing System (5.5)

Page Navigator «
2ynq Block Design

peripheral 1/0 ins.
MIO Configuration
Clock Configuration
DR Configuration

SMC Timing Calulation

Summary Report

General
'DMA Controler

6P Master AXI Interface

M AXI GPO interface

M AXIGP1Linterface

6P Slave AXI Interface.
HP Slave AXI Interface
ACP Slave AXI Interface
PS-PL Cross Trigger interface:

Enables General purpose AXI master nterface 0
Enables General purpose AXI master nterface 1

e L coss e s o5 nd s

image14.jpg
processing_system?_0

ZYNQ7 Processing System

DDR
FIXED_IO

image15.jpg
d Package New IP

VIVADO*

Create and Package IP
‘This wizard can be used to accompiish two tasks:

Package a new IP for the Vivado IP Catalog
This wizard wil qide you through the process of creating a new Vivado IP using source fies and
information from your current project or speafied drectory.

Create a new AXI4 Peripheral
This wizard wil gide you through the process of reating new AXI4 peripheral which includes:
HDL, drivr, software test applcation, P Integrator BFM simuiation and debug demonstration
design.

Clck Next to continue

Texts Enich Ccancel

image16.jpg
Create and Package New IP
Choose Create Peripheral or Package IP
Please select one of the folowing tasks.

 Package your current project
Use the project as the source for creating a new IP Defirition.
Note: All sources to be packaged must be located at or below the spefied directory.

¢ Padkage a specfied drectory.
Choose a drectory as the source for creating @ new IP Definition.

s Create a new AXI4 peripheral
Create an AXI41P, civer, software test applicaton, IP Integrator AXI4BFM simulation and debug demonstration design.

<gack [hext>

image17.jpg
Peripheral Details
‘Specify name, version and description for the new peripheral

Name: [my_mutplier

verson: [10

Display name: [ny_muitpler_v1.0

Descrpton: [y nen A

TP locaton: [D:/a0-PersonalFesD/20-FPGA_Projects/ENG3050-xiinxprojects Vivado2 142yncCustomlP ip_repo
I~ Overwrite existing

= |

image18.jpg
Add Interfaces

‘Add AXI4 interfaces supported by your peripheral

I Enable Interrupt Support

my_mitipler_v1.0

+ X

5 |

i EXER

/

Name S00_AXT

InterfaceType [uite =

InterfaceMode | Save -
DataWidth (its) |32 -

Memory Size 64 -

Number of Redisters = @os

<Back Tt Enich Cancel

image19.jpg
ckage New P

Create Peripheral

Peripheral Generation Summary.
1. TP (uoguelph.casuser:my_mltipler: 1.0) with 1 interface(s)
2. Driver(v1.00_3) and testapp more info.
3. AXI4BFM Simulation demonstratin design more nfo
4. AX14 Debug Hardware Simuation demonstration design more nfo.

Peripheral reated wil be avaiable in the catalog :
1D:/a0-PersonaFiles-D)20-FPGA_Projects/ENG3050-xiinxprojects \ivado20 14ZyncCustomlP.

NextSteps:
 AddIP to the repository

& BT

 Verify peripheral IP using AXI4 BFM Simuaton nterface:
 Verify peripheral IP using JTAG nterface:

VIVADO! | e |
<tk | e [CEe | canel

image20.jpg
xprojects|vivado2014zynccustor

Fle Edt Fow Toos Window Layout View Help

AR doRB XD D UG X L G [Bochitlaon C HRN®

pror— «| [Ceretectanaper- cat my.mitle 1.0

o
x

T Sources _o [X ProctSumary_x | ¢ Package 1P - my_multipher x | oo x

| A S 8 B[Packaging e | tdentincation
BT st
@ ropcsetess e .0~ ach mp o i 1.0 | R | verer: =

8% Add Souces SPACT () . =
grer it & Simiaton Sorces () - oy e
Ho Fie Groups [
Verson: 0
& padage Customizaton Parameters I
 Pors and interfoces Dilayrame: [my_matohervi0

4 Ptegrator

B CreateSockDesen P Desciptons [y ren AT
enlockDesin e
y Ceslier W/ Customization GUI =7 I
8 Generate ockDesn e]
|38 || reviwantpadae
4 Smaton Uraris | Comple Order | Categores: A perpherl L=l
& Smaton Settings — Rootdrectory: d:fal-personalfes-d/20-oga.profets/eng 3050 dingrojects\vvado20 14zyncastoniofo.repofmy. mltpler_10
@ Run Smiaton ¥l flename: c/aD-personalfies /20-ga.projects/eng3050-xiinprojects vivado20 14zynccustomipfp_repojmy_multplr_1.0jcompanent. i
Pt o
4 RTL Anaysis + [

5 Open Esborsted Design

4 Syntness
5 Symthess settngs
P rnsynthess
> B Open Symthesized Desin

4 Implementation
5 Implementation Settings
> Run Implementation
b @ Open Implemented Design

4 program and Debug Design Runs _ o x
4 sistream Settings o = Consiraints | s [TS [whs | TS [TPws | FaiedRoutes | [e | srav | o | Sart | Copsed | St | progess | Shategy | e |
e =B syt 1 consrs_1 Notsterted [10% _ Vivado Synthesis Defaults (Vvado Synthesis 2014) *T020dg%A1 Vivad
= =impl_1 constrs_t Notstarted [10% Vivado Implementation Defaults (Vivado Implementation 2014) xc72020dg484-1 Vivac
g Open Hardware Manager =
>
14
»
«
E
L |

Tdl Console | © Messages | G Log | 15 Reports', 3> Design Runs |

image21.jpg
Add Sources

‘This guides you through the process of adding and creating sources for your project
" Add or greate constraints.

(% Add or create design sources

" Add or create simulation sources:

" Add or create DSP sources

" Add existing block design sources

 Addexistng P

VIVADO*

To continue, cick Next

<ok [[TReEE Eish

image22.jpg
A, Add Source:

Add or Create Design Sources

Specify HDL and netist fies, or drectories containing HDL and netist fles, to 2dd to your project. Create a new source fle on disk and add it to

e [

O o e

=1+

AddFies... CreateFie..

I 5can 2nd add RTL indude files into project
[¥ Copy sources into IP Directory
[¥ Add sources from subdirectories

ok | wots | b |[Conm

image23.jpg
[Saddsorces
‘Add or Create Design Sources

Specify HDL and netist fies, or drectories containing HDL and netist fles, to 2dd to your project. Create a new source fle on disk and add it to

e [

= e

Location
@1

multpler.vhd x|_defoult D:/a0-PersonalFies-D/20-FPGA_Projects ENG3050-dinxprojects.

=1+

gesere.

[Scan and add RTL indude files into project
[¥ Copy sources into IP Directory
[¥ Add sources from subdirectories

<Back tiext > Enish Cancel

image24.jpg
| Project Manager - edit_my_mutpier_v1.0

Souces -o
AT S m e
55 Design Sources (5

" my_multipler_v1_0 - arch_imp (ry_mtoler v1_5.v7) (1}

@ mltoler - NP (mtplervho)
SPAACT ()

 Constrants

5 Smuation Sources (2)

o
x

(B =)

[Hierarchy | Libraries | Compile Order |

& Sources | Templates.

image25.jpg
signal miltiplier_out : std_logic_vector (31 downto 0);

component multiplier
port (

clk: in std logic:
in std logic VECTOR(LS downto 0);
: in std logic VECTOR(LS downto 0);
out std logic VECTOR(3L downto 0));
end component;

image26.jpg
390
B
352
e
e
£
536
397

-- Add user logic here
multiplier 0 : miltiplier
port map (
clk => §_AXI_ACIK,
s1v_reg0 (31 downto 16),
b => slv_regd (15 downto 0),
B => miltiplier_out);
- Oser logic ends

image27.jpg
aze se BE

(5 Design Sources (2)
56 my_multiplier_v1_0 - arch_imp {1y _muitoler 1 0.vhc) (1
7@ my_multiolier_v1_0_S00_AXE Jnst -my_mutpler_v1_0_S00_2
tpier - P (nuitiier.vhd)

i o
[Hierarchy | Lbraries | Compie Order |

image28.jpg
 Identifcation

V Compatiity

V Customization Parameters:
 ports and Interfaces.
 Addressing and Memory.
V Customization GUL

Review and Package

image29.jpg
&9 UlLayout (1)
59 Block Diagram (1)

image30.jpg
Summary of your 1P

P display name: my_multplier_v1.0
P desaription: My new AXI TP
P oot directory: ds/a0-personafies-d/20-fpga_projects/eng3050-dinxprojects/vivado2 14zynccustomip/ip_repojmy_mutpler_1.0

After Packaging

& An archive wil not be generated. Use the settingsink below to change your preference
o Project wl be removed after compietion
edit packaging settings

image31.jpg
Close Project 3

Fiished packaging successfuly. Do you want to dose the project?
Package IP Location: d:/a0-personalfies-d/20-fpga_projects/eng3050-ximxprojects/
vivado2014zyncaustomipip_repojmy_muitipier_1.0

] e |

image32.jpg
Search: [0 (Lmatch)

]
Name /1
my 5

Select and press ENTER or drag and drop, ESC to cancel

image33.jpg
my_multiplier_v1.0 (Pre-Produ
processing_system?7_0

DDR
FIXED_IO

ZYNQ7 Processing System

image34.jpg
2 Run Connection Autom:

Automaticaly make connections in your design by checking the boxes of the inerfaces to connect. Select an interface on the left to display its confiuration options on
the right.

| Al Automaton (1outof 1sokcted) | pecgrppon
| BB my_mitpier 0 =
= Py Connect Save inerface (fmy_multper_0/S00_AT) to seected Master address space.
1 Optons
Vester: Jorocessing_system?_OM_AXLGPO
Clock Connection (for ncomnected dks) : [Auto 1

o

image35.jpg
[pswtwat]]

o0 pa
2 ack
s aresin
rotoiz VLo Grerrodut

L

processing._system?_0

s processing_system?_0_100M

N CRO QYN BH ARG ZEL LI

ooRg|
FED 104

e TN s

pracessing system?_0_axi_periph

TING7 Pracessing Sysem

Processor System Reset

o Inercomed

p—
LD e

image36.jpg
AT S| 26t R

(PSwitiMuit_auto_pc_0.xc)
{FPSwithilt_my_multipler_0_0 (PSwthit_my_muitpler_0_0.xc)
L+ PSwithMult_processing_system7_0_0 (PSwihiut_processing_systen?_0_0.x5)
{FPSwithMlt Tst_processing_system?_0_100M_0 (PSvithMuit_rst_processing_system?_0_100M_0.xcl
@ Constraints.
5 Smulation Sources (1)
@sim_1(1)

“l | 28]
[Vnerarchy | 3 Sorces | Lorares | Compie rcer |

image37.jpg
| Generate Output Products |

The folowng auputroduct i be gerted, N

Preview
Q| @ Pwithuitbd
| -Symthess
- 3 Implementation
= 3 Smation

image38.emf

 Step 5: Assign Signals to Debug

Embedded Processor Hardware Design www.xilinx.com 26
UG940 (v 2013.2) June 19, 2013

Figure 31: Create HDL Wrapper

Step 5: Assign Signals to Debug
Now assign the signals to debug in the hardware.

1. After generating the IP Integrator design, from the Flow Navigator click Run Synthesis
(FIGURE 32).

Figure 32: Run Synthesis Option

Note: Running synthesis could take several minutes.

2. After synthesis completes, in the Synthesis Completed dialog box, check the Open
Synthesized Design option, and click OK.

3. In the Debug window, you see a list of nets in the Unassigned Debug Nets folder.

http://www.xilinx.com/

 Step 5: Assign Sig n a l s t o D e b u g

E m b e d d e d P r ocessor Hardware Design www.xilinx.com 2 6

U G 9 4 0 (v 2 0 1 3.2) June 19, 2013

Figure 31: Create HDL Wrapper

S t e p 5 : Assign Signals to Debug

N o w a s s i g n the signals to debug in the hardware.

1 .

A f t e r g e nerating the IP Integrator design, from the Flow Navigator click Run Syn t h e s i s

(F

I G U R E

3

2

).

Figure 32: Run Synthesis Option

N o t e : R unning synthesis could take several minutes.

2 .

A f t e r s y nthesis completes, in the Synthesis Completed dialog box, check the Ope n

S y n t h e s ized Design option, and click OK.

3 .

I n t h e D ebug window, you see a list of nets in the

Unassigned Debug Nets

 fol d e r .

image39.emf

 Step 7: Implement Design and Generate Bitstream

Embedded Processor Hardware Design www.xilinx.com 31
UG940 (v 2013.2) June 19, 2013

7. In the main Vivado toolbar, click the Save Constraints button to save the design after you
insert the debug cores, (FIGURE 39).

Figure 39: Save Constraints Option

Step 7: Implement Design and Generate Bitstream
1. In Flow Navigator, click Generate Bitstream to implement the design and generate a BIT

file.

Note: If the system requests to re-synthesize the design before implementing, click No.

The previous step of saving the constraints caused the flow to mark synthesis
out-of-date.

Ordinarily, you might want to re-synthesize the design if you manually changed the
constraints, but for this tutorial, it is safe to ignore this condition (FIGURE 40).

Figure 40: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click Yes.

Figure 41: No Implementation Results Available Dialog Box

http://www.xilinx.com/

image40.png
No Implementation Results Available

image41.emf

 Step 7: Implement Design and Generate Bitstream

Embedded Processor Hardware Design www.xilinx.com 32
UG940 (v 2013.2) June 19, 2013

During implementation flow, messages in the Log window show the implementation of the
debug cores .

This step is required to synthesize the debug core modules so that they can replace the
debug core black boxes that you added to the design previously (FIGURE 42).

Figure 42: Messages

After the debug cores are implemented, the rest of the implementation flow (commands
such as opt_design, place_design, and route_design) follow as usual.

3. After the design implementation, click Open Implemented Design, (FIGURE 43).

Figure 43: Bitstream Generation Completed

4. You can keep the synthesized design open if you want to debug more signals; otherwise
close the synthesized design to save memory (FIGURE 44).

http://www.xilinx.com/

image42.emf

 Step 8: Export Hardware to SDK

Embedded Processor Hardware Design www.xilinx.com 33
UG940 (v 2013.2) June 19, 2013

Figure 44: Close Synthesized Design Dialog Box

5. You might get a warning that the implementation is out of date. Click Yes.

Figure 45: Implementation Is Out-of_date Dialog Box

6. In the implemented design, go to the Netlist window to see the inserted ILA and Debug
Hub (dbg_hub) cores in the design (FIGURE 46).

Figure 46: Implemented Design

Step 8: Export Hardware to SDK
In this step, you export the hardware description to SDK. You use this in Lab 2.

The IP integrator block diagram, and the Implemented design, must be open to export the
design to SDK.

IMPORTANT: For the Digilent driver to install, you must power on and connect the board to the

host PC before launching SDK.

http://www.xilinx.com/

image43.emf

 Conclusion

Embedded Processor Hardware Design www.xilinx.com 34
UG940 (v 2013.2) June 19, 2013

Export to SDK

1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 47).

Figure 47: IP Integrator: Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

The Export Hardware for SDK dialog box opens.

If you want to go on to Lab 2 then ensure that Export Hardware, Include Bitstream, and
Launch SDK are checked (FIGURE 49). Otherwise, you can leave the Launch SDK option
unchecked.

Figure 49: Export Hardware for SDK

Conclusion
In this lab you have:

http://www.xilinx.com/

 C o n c l u s i o n

E m b e d d e d P r o c e s s o r H a r d w a re Design www.xilinx.com 3 4

U G 9 4 0 (v 2 0 1 3 . 2) J u n e 1 9 , 2 0 13

E x p o r t t o S D K 1 . I n t h e F l o w N a v i g a t o r, click Open Block to invoke the IP integrato r d e s i g n (F I G U R E 4 7) .

Figure 47: IP Integrator: Open Block Design

N o w y o u a r e r e a d y t o export your design to SDK.

2 .

F r o m t h e m a i n V i v a d o File menu, select Export Hardware for SDK (F

I G U R E

4 8) .

Figure 48: Export Hardware for SDK

T h e E x p o r t H a r d w a r e for SDK dialog box opens.

I f y o u w a n t t o g o o n t

o

 Lab 2 then ensure that Export Hardware, Inc l u d e B i t s t r e a m , a n d

L a u n c h S D K a r e c h e c k

e

d (F

IGURE

49). Otherwise, you can leave the

L a u n c h S D K o p t i o n

u n c h e c k e d .

Figure 49: Export Hardware for SDK

C o n c l u s i o n

I n t h i s l a b y o u h a v e :

image44.emf

 Conclusion

Embedded Processor Hardware Design www.xilinx.com 34
UG940 (v 2013.2) June 19, 2013

Export to SDK

1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 47).

Figure 47: IP Integrator: Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

The Export Hardware for SDK dialog box opens.

If you want to go on to Lab 2 then ensure that Export Hardware, Include Bitstream, and
Launch SDK are checked (FIGURE 49). Otherwise, you can leave the Launch SDK option
unchecked.

Figure 49: Export Hardware for SDK

Conclusion
In this lab you have:

http://www.xilinx.com/

 C o n c l u s i o n

E m b e d d e d P r o cessor Hardware Design www.xilinx.com 3 4

U G 9 4 0 (v 2 0 1 3 . 2) June 19, 2013

E x p o r t t o SDK 1 . I n t h e F l o w Navigator, click Open Block to invoke the IP integrator design (FIGURE 4 7) . Figure 47: IP Integrator: Open Block Design N o w y o u are ready to export your design to SDK. 2 . F r o m t h e main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

T h e E x p o rt Hardware for SDK dialog box opens.

I f y o u w a nt to go on to Lab 2 then ensure that Export Hardware, Include Bitstream , a n d

L a u n c h S DK are checked (F

IGURE

49). Otherwise, you can leave the Launch SDK o p t i o n

u n c h e c k e d.

Figure 49: Export Hardware for SDK

C o n c l u sion

I n t h i s l a b y o u have:

image45.emf

 Conclusion

Embedded Processor Hardware Design www.xilinx.com 34
UG940 (v 2013.2) June 19, 2013

Export to SDK

1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 47).

Figure 47: IP Integrator: Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

The Export Hardware for SDK dialog box opens.

If you want to go on to Lab 2 then ensure that Export Hardware, Include Bitstream, and
Launch SDK are checked (FIGURE 49). Otherwise, you can leave the Launch SDK option
unchecked.

Figure 49: Export Hardware for SDK

Conclusion
In this lab you have:

http://www.xilinx.com/

 C o n c l u s i o n

E m b e d d e d P r o c e s s o r H a r d w a r e D e s ign www.xilinx.com 3 4

U G 9 4 0 (v 2 0 1 3 . 2) J u n e 1 9 , 2 0 1 3

E x p o r t t o S D K 1 . I n t h e F l o w N a v i g a t o r , c l i c k Open Block to invoke the IP integr a t o r d e s i g n (F I G U R E 4 7) . F i gure 47: IP Integrator: Open Block Desi g n N o w y o u a r e r e a d y t o e x p ort your design to SDK. 2 . F r o m t h e m a i n V i v a d o F i l e menu, select Export Hardware for SD K (F I G U R E 4 8) . Figure 48: Export Hardware for SDK T h e E x p o r t H a r d w a r e f o r S DK dialog box opens. I f y o u w a n t t o g o o n t o L a b 2 then ensure that Export Hardware , I n c l u d e B i t s t r e a m , a n d L a u n c h S D K a r e c h e c k e d (F IGURE 49). Otherwise, you can leav e t h e L a u n c h S D K o p t i o n u n c h e c k e d .

Figure 49: Export Hardware for SDK

C o n c l u s i o n

I n t h i s l a b y o u h a v e :

image46.emf

Embedded Processor Hardware Design www.xilinx.com 36
UG940 (v 2013.2) June 19, 2013

Chapter 3

Lab 2: Using SDK and the Vivado IDE
Logic Analyzer

Introduction
You can run this lab after Lab 1. Make sure that you followed all the steps in Lab 1 before
proceeding.

Step 1: Start SDK and Create a Software Application
1. If you are doing this lab as a continuation of Lab 1 then SDK should have launched in a

separate window (if you checked the Launch SDK option while exporting hardware). You can
also start SDK from the Windows Start menu by clicking on Start > All Programs > Xilinx
Design Tools > Vivado 2013.2 > SDK > Xilinx SDK 2013.2.

When starting SDK in this manner you need to ensure that you in the correct workspace.

2. You can do that by clicking on File > Switch Workspace > Other in SDK. In the Workspace
Launcher dialog box in the Workspace field, point to the SDK_Export folder where you had
exported your hardware from lab 1. Usually, this is located at
..\project_name\project_name.sdk\SDK\SDK_Export.

Now you can create a peripheral test application.

3. Select File > New > Application Project (FIGURE 50).

Figure 50: File >New > Application Project

http://www.xilinx.com/

Embedded Processor Hardware Design www.xilinx.com 36

UG940 (v 2013.2) June 19, 2013

Chapter 3 Lab 2: Using SDK and the Vivado IDE Logic Analyzer Introduction You can run this lab after Lab 1. Make sure that you followed all the steps in Lab 1 before proceeding. Step 1: Start SDK and Create a Software Application 1. If you are doing this lab as a continuation of Lab 1 then SDK should have launched in a separate window (if you checked the Launch SDK option while exporting hardware). You can also start SDK from the Windows Start menu by clicking on Start > All Programs > Xilinx Design Tools > Vivado 2013.2 > SDK > Xilinx SDK 2013.2. When starting SDK in this manner you need to ensure that you in the correct workspace. 2. You can do that by clicking on File > Switch Workspace > Other in SDK. In the Workspace Launcher dialog box in the Workspace field, point to the SDK_Export folder where you had exported your hardware from lab 1. Usually, this is located at ..\project_name\project_name.sdk\SDK\SDK_Export. Now you can create a peripheral test application. 3. Select File > New > Application Project (FIGURE 50).

Figure 50: File >New > Application Project

image47.jpg
=loix|

st s o, E]

Project name: [Testnatoier

IV Use defauitlocation

Location; [[57120 PersonaFies D0 FPGA_Projects ENGI00-dimproecWn | Browse,
=] e
&

hosse fi syster [Gefaut]

[Trget arcare
HardwarePltfom: [z st 7 s I patorm.0

.

[Trget Software
Language: &c Cocts
05 Platfrn: e

Board Support Package: (* Create New [Testhultpler_bsp
€ sz existing |

©) R e

image48.png
Create one of the available templates to generate a fully-functioning
application project.

Available Templates:

Dhrystone.

Emﬁ AEEI'

wiP Echo Server
Memory Tests
Peripheral Tests
Zynq FSBL

Let's say ‘Hello World'in C.

image49.emf

 Step 1: Start SDK and Create a Software Application

Embedded Processor Hardware Design www.xilinx.com 38
UG940 (v 2013.2) June 19, 2013

5. From the Available Templates, select Peripheral Test (FIGURE 52) and click Finish.

Figure 52: SDK New Project Template

When the program finishes compiling, you see the following (FIGURE 53).

Figure 53: SDK Message

http://www.xilinx.com/

 Step 1: Start SDK and Create a Soft w a r e A p p l i c a t i o n

E m b e d d e d P r o c

e

ssor Hardware Design www.xilinx.com 3 8

U G 9 4 0 (v 2 0 1 3 . 2) June 19, 2013

5 . F r o m t h e Available Templates, select Peripheral Test (FIGURE 52) and click Finish . Figure 52: SDK New Project Template W h e n t h e program finishes compiling, you see the following (FIGURE 53).

Figure 53: SDK Message

image50.jpg
rinclude "platform.
#include "xbasic_types
#include "xparameters.h”

Xuint32 *baseaddr_p = (Xuint32 *)XPAR_MY_MULTIPLIER 0_S00_AXI_BASEADDR;

int main()
{
init_platform();

i1 printf("Multiplier Test\n\r");
// write multiplier inputs to register 6

*(baseaddr_p+@) = 0020003,
xd1_printf("Wrote: ox¥osx \n\r"

*(baseaddr_p+0));

// Read multiplier output from register 1
xil_printf("Read : 0x308x \n\r", *(baseaddr_p+1));

i1 printf("end of test\n\n\r");

return 0;

pell

image51.png
Xilinx Tools | Window Help
Generate linker script

Board Support Package Settings
Repositories

Program FPGA
Program Flash

XMD Console

Launch Shell

Configure JTAG Settings

System Generator Co-Debug Settings
Create Zynq Boot Image

EXx#dK 9% ©52

image52.jpg
Create, manage, and run configurations
@ [picaton]: Applcation path s empty. @

CEx[B3- Name: [ew_configuration
[fpe fiter text © Terget setup .] Appication| "’ STDIO Connection) i rofie Options | Commen|

[E] c/c++ Applcation

[E] clc++Remote Applcation Debug Type: [Standalone Appication Debug 7|
& Launch Growp I

ecton: [Loca <] New
A Remote ARM Linux Applcation s B =
{5 Terget Commuricaton Framemork e [

&, Yiinx C/C:++ application (GDB)

Hardware platform: [2ED_Custom_te_wrapper_w_piatform_0 =

[ps7_cortexas o I |

‘Summary of operations to be performed

Foloning operatons il be performed before lounding the debugger. <]
1. Resetprocessor.

Fesetroceseor
= Program FRGH:
1= R et

1= R pe72post cortia)
T~ Enable Cross-Triggering

Filter matched 7 of 10 items Apply. Revert
® e

image53.jpg
2 problems | 7 Tasks | & Console | = Properties | 4 Terminal 1 52 | 47 &%
Serial: (COMS, 115200, 8, 1, None, None - CONNECTED) - Encoding: (ISO-8859-1)
Hultiplier Test A

End of test

image1.png
VIVADO AR

Getting Started Documentation

Create New Project ==~ Documentation and Tutorials
New project Wizard wil guide you through the process: I
e R || [
2new project.
Open Projec User Guide
Open one of the most recently used projects or More detailed info on Vivado commands, dialogs,
any previously created project. and buttons.
Open Example Project ® Quick Take Videos

AU view 2 seres of short videos on various topics from
AR design flows overview to recommended methodology.
Manage IP Release Notes Guide

SEW
Com dhe FiCataton sl ey avad e = Information about instalation and new IDS features.

Create and customize IP to e used n 2 new project
or open previously customized IPto make changes.

in tis release.

3 Td Console.

