
SDSoC Environment User
Guide

Getting Started

UG1028 (v2015.2) July 20, 2015

Revision History
The following table shows the revision history for this document.

Date Version Revision

07/20/2015 2015.2 First version of the document.

SDSoC Environment Getting Started www.xilinx.com 2
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=2

Table of Contents
Revision History ... 2
Table of Contents ... 3

Chapter 1: Introduction .. 5
User Design Flow ... 5
System Requirements .. 6
Obtaining and Managing a License ... 7
Downloading ... 8
Installing.. 8
Validating Installation .. 11

Chapter 2: Tutorial: Creating, Building and Running a Project 18
Learning Objectives.. 18
Creating a New Project... 18
Marking Functions for Hardware Implementation... 22
Building a Design with Hardware Accelerators .. 25
Running the Project ... 26
Questions and Additional Exercises .. 28

Chapter 3: Tutorial: Working with System Optimizations 30
Introduction to System Ports and DMA... 30
Learning Objectives.. 31
Creating a New Project... 32
Marking Functions for Hardware Implementation... 35
Specifying System Ports ... 38
Error Reporting .. 40
Additional Exercises ... 40

Chapter 4: Tutorial: Debugging Your System ... 45
Learning Objectives.. 45
Setting Up the Board.. 45
Creating a Standalone Project .. 46
Setting up the Debug Configuration.. 47
Running the Application... 48
Additional Exercises ... 49

Chapter 5: Tutorial: Estimating System Performance 53
Learning Objectives.. 53
Setting Up the Board.. 53
Setting up the Project to Use SDEstimate Configuration .. 54

SDSoC Environment Getting Started www.xilinx.com 3
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=3

Comparing Software and Hardware Performance ... 55

Changing Scope of Overall Speedup Comparison... 57

Additional Exercises ... 58

Chapter 6: Tutorial: Task Pipelining Optimizations 61
Task Pipelining ... 61

Learning Objectives.. 62

Task Pipelining in the Matrix Multiply Example ... 62

Appendix A: Troubleshooting.. 64
Path Names Too Long... 64

Use Correct Tool Scripts.. 64

Appendix B: Additional Resources and Legal Notices 65
Xilinx Resources ... 65

Solution Centers .. 65

References... 65

Please Read: Important Legal Notices... 66

SDSoC Environment Getting Started www.xilinx.com 4
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=4

Chapter 1

Introduction
The SDSoC™ (Software-Defined System On Chip) environment is an Eclipse-based Integrated
Development Environment (IDE) for implementing heterogeneous embedded systems using the
Zynq®-7000 All Programmable SoC platform. The SDSoC environment provides an embedded
C/C++ application development experience with an easy to use Eclipse IDE, and comprehensive
design tools for heterogeneous Zynq SoC development to software engineers and system
architects. The SDSoC environment includes a full-system optimizing C/C++ compiler that
provides automated software acceleration in programmable logic combined with automated
system connectivity generation. The application programming model within the SDSoC
environment should be intuitive to software engineers. An application is written as C/C++
code, with the programmer identifying a target platform and a subset of the functions within
the application to be compiled into hardware. The SDSoC system compiler then compiles the
application into hardware and software to realize the complete embedded system implemented
on a Zynq device, including a complete boot image with firmware, operating system, and
application executable.

The SDSoC environment abstracts hardware through increasing layers of software abstraction
that includes cross-compilation and linking of C/C++ functions into programmable logic fabric
as well as the ARM CPUs within a Zynq device. Based on a user specification of program
functions to run in programmable hardware, the SDSoC environment performs program
analysis, task scheduling and binding onto programmable logic and embedded CPUs, as well as
hardware and software code generation that automatically orchestrates communication and
cooperation among hardware and software components.

The SDSoC environment 2015.2 release includes support for the ZC702, ZC706, MicroZed,
ZedBoard and Zybo development boards featuring the Zynq-7000 AP SoC. Additional platforms
are available from partners and for more information, visit the SDSoC environment web page.

User Design Flow
The first step is to identify compute-intensive hot spots in the application that can be migrated
to programmable logic to achieve higher performance, and to isolate them into functions that
you can compile for hardware. C/C++ code compiled for programmable logic with the SDSoC
environment must conform to coding guidelines described in SDSoC Environment User Guide
(UG1027), Calling and Coding Guidelines , and must also conform to Vivado® High-Level
Synthesis (HLS) guidelines. For example, the code cannot invoke recursive functions, dynamically
allocate memory, or make unrestricted use of pointers. See the SDSoC Environment User Guide
(UG1027), A Programmer’s Guide to Vivado High-Level Synthesis for more information. RTL IP
needs to be wrapped into a C-callable library, as described in SDSoC Environment User Guide:
Platforms and Libraries (UG1146), Creating a Library.

SDSoC Environment Getting Started www.xilinx.com 5
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xAProgrammersGuideToVivadoHighLevelSynthesis
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xAProgrammersGuideToVivadoHighLevelSynthesis
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1146-sdsoc-platforms-and-libraries.pdf;xCreatingALibrary
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1146-sdsoc-platforms-and-libraries.pdf;xCreatingALibrary
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=5

Chapter 1: Introduction

Figure 1–1: SDSoC Environment Flow

This document introduces the SDSoC environment development platform using its Eclipse
based GUI. This integrated development environment provides interactive features to simplify
the development process, project management, and build automation. However, most of these
operations can also be scripted using makefiles.

System Requirements
• Host running one of the following operating systems:

– Linux – Red Hat Enterprise Workstation 6.4-6.6 and 7.0 (64-bit), Cent OS 7.0 (64-bit)
and Ubuntu Linux 14.04 LTS (64-bit)

– Windows – Windows 7, 7 SP1 and 8.1 Professional (64-bit), English
• Installation of the Xilinx SDSoC™ environment, which includes:

– SDSoC environment 2015.2, including an Eclipse/CDT-based GUI, high-level system
compiler, and ARM GNU toolchain

– Vivado® Design Suite System Edition 2015.2, with Vivado High-Level Synthesis (HLS)
and the Xilinx Software Design Kit (SDK)

SDSoC Environment Getting Started www.xilinx.com 6
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=6

Chapter 1: Introduction

• The SDSoC development environment includes the same GNU ARM toolchain included with
the Xilinx® Software Development Kit (SDK) 2015.2, which also provides additional tools
used by the SDSoC environment. The SDSoC environment setup script sets PATH variables
to use this toolchain.

– The Sourcery CodeBench toolchain contains 32-bit executables, requiring
your Linux host OS installation to include 32-bit compatibility libraries.
The Xilinx version of the Sourcery CodeBench Getting Started guide
can be found as part of the SDSoC environment installation at
SDK/SDK/gnu/arm/lin/share/doc/xilinx-arm-xilinx-linux-gnueabi/
pdf/getting-started.pdf. The “Host Operating System Requirements” section
describes host requirements for Sourcery CodeBench software, including the 32-bit
libraries and where and how to access them. For more information, a similar getting
started guide is available from Mentor Graphics at their website.

– RHEL 5 64-bit x86 Linux installations typically include the 32-bit compatibility
libraries, but RHEL 6 might not and may need to be added separately; see
https://access.redhat.com/site/solutions/36238.

– On RHEL, 32-bit compatibility libraries can be installed by becoming a superuser
(or root) with root access privileges and running the yum install glibc.i686
command.

– On Ubuntu, 32-bit compatibility libraries can be installed by becoming a superuser
(or root) with root access privileges and running the commands (refer to the SDSoC
release notes for additional information):

sudo dpkg --add-architecture i386
sudo apt-get update
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386
sudo apt-get install libgtk2.0-0:i386 dpkg-dev:i386
sudo ln -s /usr/bin/make /usr/bin/gmake

– The version of the toolchain can be displayed by running the
arm-xilinx-linux-gnueabi-g++ -v command.

– The last line of the output printed in the shell window should be gcc version 4.9.1
(Sourcery CodeBench Lite 2014.11-30).

• Linux Only - Availability of the following host operating system command (this utility must
be installed before the SDSoC environment can be used): xsltproc. For Ubuntu, run
the following command:

sudo apt-get install xsltproc

• A mini-USB cable to observe the UART output from the board

Obtaining and Managing a License
The SDSoC environment 2015.2 release uses the Xilinx FLEXnet license configuration manager.
Ask your Xilinx technical contact for information on how to obtain a license key.

SDSoC Environment Getting Started www.xilinx.com 7
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.mentor.com/
https://access.redhat.com/site/solutions/36238
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=7

Chapter 1: Introduction

Install your license key using the appropriate method for node-locked or floating license
servers. Node-locked licenses are typically copied to <home>/.Xilinx (Linux) or C:\.Xilinx
(Windows). For existing floating license installations, you typically add the new license file
contents to the existing license file and restart the server. For new floating license installations,
run the FLEXnet utility, lmgrd, for example:

lmgrd –c <path_to_license>/Xilinx.lic –l <path_to_license>/log1.log

Client machines for node-locked licenses look for the license in one or more fixed locations.
For the floating license, add the path to the license file or license server in the port@server
format in the XILINXD_LICENSE_FILE environment variable.

NOTE: If you use Windows Explorer to create the folder C:\.Xilinx, navigate to C:\ and
when you click on New Folder, enter the folder name with a trailing dot .Xilinx. (dot Xilinx
dot). Press Enter and Windows creates the folder name .Xilinx (dot Xilinx); the trailing dot
tells Windows to allow dot as the first character of the folder name.

TIP: The SDSoC environment 2015.2 release licenses are administered in the same manner
as other Xilinx products. Your local Xilinx license administrator can help install the SDSoC
environment license key file.

Downloading
To download the SDSoC™ environment, go to the SDSoC environment web page.

Installing
Download the installer files, execute them and follow the on-screen instructions. The
instructions below illustrate a typical installation session.

1. Execute the xsetup.exe (on Windows) or xsetup (on Linux) installer files.

The SDSoc Installer - Welcome page appears.

2. Click Next.

The SDSoc Installer - Accept License Agreements page appears.

3. Check all the I Agree check boxes on the page to accept Xilinx and other third-party
license terms and conditions.

4. Click Next.

The SDSoC Environment Installer page appears.

5. Customize your installation by selecting options on the SDSoC Installer page.

NOTE: If you have installed Vivado Design Suite 2015.2 previously, you still need to
install the SDSoC environment version of the Vivado tools, but you do not need to
reinstall the Cable Drivers.

SDSoC Environment Getting Started www.xilinx.com 8
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/products/design-tools/sdx/sdsoc.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=8

Chapter 1: Introduction

6. Click Next.

The SDSoC Installer - Select Destination Directory page appears.

7. Select installation options such as location and shortcuts.

8. Click Next.

The SDSoC Installer - Installation Summary page appears.

9. Click Install to begin the installation.

After the installation completes, you have a directory with the following structure:
<path_to_install>/SDSoC/2015.2

arm-xilinx-eabi
arm-xilinx-linux-gnueabi
bin
data
docs
lib
llvm-clang
platforms
samples
scripts
SDK
tps
Vivado
Vivado_HLS
settings64.[csh|sh|bat]

The installed software includes a copy of the SDSoC environment 2015.2, Vivado Design Suite
2015.2, Vivado HLS 2015.2, Xilinx SDK 2015.2 and scripts to set the environment.

Linux Environment Setup Script
To run the SDSoC™ environment, use the environment setup script (settings64.csh
or settings64.sh) created by the installer. This script in turn runs setup scripts in the
installation directory of each of the underlying tools to update the PATH environment.

To confirm that the environment is set up properly, type the commands below and confirm that
the commands find the installation locations consistent with the tool setup script:

% source settings64.csh
% which sdscc # SDSoC C/C++ build tool version
% which vivado # Vivado design tool version
% which vivado_hls # Vivado High-Level Synthesis (HLS) tools
% which bootgen # Boot image creation tool (2015.2 version)

SDSoC Environment Getting Started www.xilinx.com 9
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=9

Chapter 1: Introduction

If the paths returned by the Linux which command are not consistent with the path to the
installation directory, or the command was not found, confirm that the correct setup script
was run.

CAUTION! In each shell used to run the SDSoC environment, use only the environment setup
scripts corresponding to the Xilinx tool releases or PATH environment setting listed above. Running
Xilinx design tool environment setup scripts from other or additional releases in the same shell
might result in incorrect behavior or results with the SDSoC environment.

Windows Environment Setup Script
To run the SDSoC environment, open the tool from the Windows Start Menu by clicking Xilinx
Design Tools > SDSoC 2015.2 > SDSoC 2015.2 or by double-clicking a desktop shortcut
created by the installer.

To confirm that the environment is set up properly, invoke the SDSoC Terminal by clicking the
SDSoC 2015.2 Terminal shortcut created by the installer.

Type the following commands, and confirm that the installation location is consistent with the
SDSoC environment 2015.2 installation. (Do not enter the comments beginning with REM.)

> REM SDSoC C/C++ build tool
> where sdscc
> REM Vivado design tool
> where vivado
> REM Vivado High-Level Synthesis (HLS) tools
> where vivado_hls
> REM Boot image creation tool (2015.2 version)
> where bootgen

If the paths returned by the where command are not consistent with the path to the
installation directory, or the command was not found, confirm that you ran the commands in
an SDSoC 2015.2 Terminal.

CAUTION! If Cygwin is included in a global PATH environment variable and issues are
encountered, it may need to be temporarily removed when running SDSoC™ development
environment flows.

For example, in a command shell, type:
set PATH=%PATH:c:\cygwin\bin;=%.

SDSoC Environment Getting Started www.xilinx.com 10
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=10

Chapter 1: Introduction

Validating Installation
A basic use flow for validating the SDSoC™ development environment installation includes the
steps outlined below. Specific instructions are given for the ZC702 board, but if you have a
different board, use this information as a reference.

1. Testing the board setup, connections and terminal setup using a matrix multiplication
pre-built design that can be copied to an SD card. Insert the SD card into your board,
power on the board, run the ELF and observe the output of the matrix multiplication on a
terminal connected to the board via a USB UART connection.

2. Using the SDSoC environment to create a simple matrix multiplication application example,
targeting the matrix multiplication function for conversion to a hardware accelerator
block that resides on the programmable logic. This step validates the tool installation
and environment setup.

3. Running the example on the board. The SDSoC environment produces an SD card image
containing a Linux bootloader, Linux kernel with the required drivers to communicate with
the hardware accelerator, file system, and the application ELF. Use the SD card to run
the ELF and observe the output.

Configuring the Board for SD Card Boot
To boot the board from an SD card, you need to physically change either a switch or jumper
settings on the board. This section describes settings for a ZC702 board. If you have a different
board, consult your board reference guide for the appropriate switch or jumper settings.

1. Identify whether you have to change a jumper or a switch.

This depends on the version of the ZC702 board.

SDSoC Environment Getting Started www.xilinx.com 11
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=11

Chapter 1: Introduction

2. To set jumpers or switches to boot from the SD card:

• For Revision C and earlier boards:

– J22 1-2 (connects pins 1 and 2)

– J25 1-2 (connects pins 1 and 2)

• For Revision D and newer boards:

DIP switch SW16 (light blue/grey color) positions 3 and 4 should be set to 1.

The SD boot settings for the ZC702 Evaluation Board are also available in the Zynq-7000
XC7Z020 All Programmable SoC User Guide (UG850) and the wiki page, Boot Pre-Built
Xilinx ZC702 Image.

Connecting the Board to a Serial Terminal
To connect a ZC702 board to a serial terminal you need a mini USB cable to connect the UART
port on the board to the computer where you run a serial terminal. There is a serial terminal
available as part of the SDSoC IDE (tab labeled Terminal 1 at bottom of screen).

If you have a different board, consult your board reference guide for the proper cable type and
connector to use, as well as USB UART driver installation. Serial terminal setup steps are similar.

1. Connect the mini USB cable to the UART port.

SDSoC Environment Getting Started www.xilinx.com 12
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/bkdoc?k=zc702_zvik;d=ug850-zc702-eval-bd.pdf
http://www.xilinx.com/cgi-bin/docs/bkdoc?k=zc702_zvik;d=ug850-zc702-eval-bd.pdf
http://www.wiki.xilinx.com/Boot+Pre-Built+Xilinx+ZC-702+image
http://www.wiki.xilinx.com/Boot+Pre-Built+Xilinx+ZC-702+image
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=12

Chapter 1: Introduction

2. Set up the serial terminal (for example, puTTY, minicom, or the SDSoC environment
terminal):

• Set the baud rate to 115200 baud.

• In Windows, set the serial port to COMn, where n is a number and can be found
as follows:

– Select Start > Computer then right-click Properties.
– Select Device Manager and open Ports (COM & LPT).

– Use the COM port labeled Silicon Labs CP210x USB to UART Bridge.

NOTE: If the right COM port does not appear on the Terminal Settings window,
make sure the board is connected to the USB port and turned on. Restart the SDSoC
environment by selecting File > Restart and the COM port should appear on the list.

3. Power on the board.

The board needs to be powered on at least once with the mini USB cable
connected for Windows to recognize the UART and install the driver. You might
need to power cycle the board. If the driver does not load you can download it
fromhttp://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx and
install it manually.

SDSoC Environment Getting Started www.xilinx.com 13
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=13

Chapter 1: Introduction

Executing a Pre-built Application

The installation directory for the SDSoC™ environment contains several examples in the
<path_to_install>/SDSoC/2015.2/samples folder.

The mmult_pipelined example contains C++ source files containing the main application
that calls a matrix multiplication function and displays the output on stdout using printf()
statements, a makefile to build the application, and the sd_card_prebuilt folder containing
pre-built files. The files in the sd_card_prebuilt folder are used to validate your board,
board connections, and terminal setup before using the SDSoC environment.

The mmult_pipelined example is found in the folder
<path_to_install>/SDSoC/2015.2/samples/mmult_pipelined, which has
the directory structure below:

<path_to_install>/SDSoC/2015.2/samples/mmult_pipelined
Makefile
mmult.cpp
mmult_accel.cpp
mmult_accel.h
sd_card_prebuilt

BOOT.BIN
README.txt boot.bif
devicetree.dtb mmult.elf
uImage
uramdisk.image.gz

The mmult_pipelined example includes a pre-built application
for the ZC702 board. If you have a different board, check the file
<path_to_install>/SDSoC/2015.2/samples/README.txt to locate an application that
runs on your board and use its pre-built application. Each example includes a README file
describing how to run the application. If using a partner board or platform, a pre-built SD card
application may be available. If a pre-built application can not be located, skip this step.

To run the pre-built application on the ZC702 board, follow these steps:

1. Copy the contents of the sd_card_prebuilt folder to the root folder of an SD card.

The SD card must be formatted using FAT32 (not NTFS).
2. Insert the card into the SD card slot of the ZC702 board.
3. Confirm jumpers or switches are set to boot from the SD card. See Configuring the

Board for SD Card Boot.
4. Connect an Ethernet cable from the board to your network.

This is optional. It allows you to connect to the network.
5. Set up a serial terminal. See Connecting the Board to a Serial Terminal.
6. With the SD card inserted and cables connected, power up the board and start the

serial terminal session.

You should see the Done LED turn green and Linux booting.
7. At the prompt, type cd /mnt

This takes you to the SD card folder containing the application ELF file.

SDSoC Environment Getting Started www.xilinx.com 14
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=14

Chapter 1: Introduction

8. To run the application ELF, type: ./mmult.elf
9. The application displays information about the run and the results of the matrix

multiplication.

You see output similar to that shown below:
Testing mmult …
Average number of processor cycles for golden version: 182299
Average number of processor cycles for hardware version: 18685
TEST PASSED

If you are able to run the pre-built application, continue on to the next section.

IMPORTANT:

Do not proceed to the next section if you are not able to run the pre-built application.

If you power up the board and the Done LED does not turn green, this indicates the bootloader is
not configuring the programmable logic. Confirm that the pre-built SD card files were copied to
the root (top) location of the SD card and not into a folder, and that the file sizes match. Confirm
jumper settings. Use the SD card to boot another board to determine if the first one is not
working properly. Confirm the SD card was formatted using FAT32 (not NTFS).

If you do not see Linux booting on the terminal, check the baud rate and COM port settings
Confirm the USB UART drivers are installed (uninstall and reinstall if unsure).

Building and Executing an Example Application
You can now build the sample design
<path_to_installation>/SDSoC/2015.2/samples/mmult_pipelined, and in doing
so validate your tool installation and environment setup.

The mmult_pipelined example was created to run on the ZC702 board. The instructions
below are for that board.

If you have a different board, you might still be able to use this design by changing
the makefile to specify platform option for your board, for example a ZC706 (-sds-pf
zc706), instead of the ZC702 (-sds-pf zc702). Alternatively, check the file
<path_to_install>/SDSoC/2015.2/samples/README.txt to locate an application
that runs on your board and use that application, or for partner boards and platforms, use a
partner-provided example.

The mmult_pipelined folder contains C++ source files containing the main application that
calls a matrix multiplication function and displays the output on stdout using printf()
statements.

A user makefile invokes the SDSoC environment to produce the hardware system including
hardware accelerators, along with software libraries and API to utilize the hardware. The
top-level makefile contains targets to build object files (.o) from application source files. Link
them to create the application ELF file and produce an SD card image.

The following sections provide details on how to build the application on supported hosts.
• Building an Application on a Linux Host
• Building an Application on a Windows Host

If the make command completes successfully, run the application on the ZC702 board. For
details,see Executing an Example Application.

SDSoC Environment Getting Started www.xilinx.com 15
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=15

Chapter 1: Introduction

Building an Application on a Linux Host
To build the example application on a Linux host:

1. Set up your environment to run the SDSoC environment by running the setup script
created by the installer:
• for a C-Shell

% source <path_to_install>/SDSoC/2015.2/settings64.csh

• for a Bourne Shell or Bash
% . <path_to_install>/SDSoC/2015.2/settings64.sh

2. Copy the folder named mmult_pipelined to a working directory where you have
write permission:

% cp –r <path_to_install>/SDSoC/2015.2/samples/mmult_pipelined .
% cd mmult_pipelined

3. Build the application and the SD card image:

% which sdscc # displays path to the sdscc tool
% make all

The build takes some time. After completion, a folder named sd_card contains the ELF file
and boot image required to start Linux on the ZC702 board and run the ELF application.

Building an Application on a Windows Host
To build the example application on a Windows host:

1. Run the SDSoC 2015.2 Terminal shortcut.

This sets up your environment using commands described in Building an Application on
a Linux Host.

2. Type the commands below at the Windows command shell prompt ‘>’ (you need not
enter the comments beginning with REM at the prompt):

> cp –r <path_to_sdsoc_install>\SDSoC\2015.2\samples\mmult_pipelined
<path_to_user_folder>\mmult_pipelined
> cd <path_to_user_folder>\mmult_pipelined
> REM displays path to the sdscc tool
> where sdscc
> make

NOTE: CP is a Linux command, which is a part of your environment inherited from
the SDSoC environment.

A subset of Linux shell commands are available if you want to use them; otherwise you
can use Windows commands, such as:

> xcopy <path_to_install>\SDSoC\2015.2\samples\mmult_pipelined
<path_to_user_folder>\mmult_pipelined /s /e /h
> cd <path_to_user_folder>\mmult_pipelined
> make

SDSoC Environment Getting Started www.xilinx.com 16
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=16

Chapter 1: Introduction

Executing an Example Application

After generating the application, run it on the ZC702 board. For details, see Executing a
Pre-built Application. In the summary below, steps that were performed earlier (jumper and
switch settings, Ethernet cable connection, and serial terminal setup) are not described again
and have been omitted.

1. Copy the contents of the sd_card folder to an SD card.

2. Insert the card into the SD card slot of the ZC702 board, and confirm jumpers or switches
are set to boot from the SD card. See Configuring the Board for SD Card Boot.

3. Connect the mini USB cable from the board to the computer.

4. With the SD card inserted and cables connected, power up the board and start the serial
terminal session. See Connecting the Board to a Serial Terminal.

You should see Linux booting.

5. At the prompt, type cd /mnt.

This takes you to the SD card folder containing the application ELF file.

6. To run the application ELF, type: ./mmult.elf

7. The application displays information about the run and the results of the matrix
multiplication.

The output is similar to that shown below:
Testing mmult …
Average number of processor cycles for golden version: 182299
Average number of processor cycles for hardware version: 18685
TEST PASSED

If the application runs properly on the board, try running and modify additional designs in
the samples folder. SDSoC Environment User Guide (UG1027) demonstrates techniques for
increasing performance across a range of implementation examples.

IMPORTANT: If you are unable to run the application and have confirmed the board has
been set up properly, contact Xilinx Support.

SDSoC Environment Getting Started www.xilinx.com 17
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf
http://www.xilinx.com/support/service-portal.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=17

Chapter 2

Tutorial: Creating, Building and Running a
Project

This tutorial demonstrates how you can use the SDSoC environment to create a new project
using available templates, mark a function for hardware implementation, build a hardware
implemented design, and run the project on a ZC702 board.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary
detailed steps allowing you to make choices based on your skill level as you progress through
it. If you need help completing a general instruction, go to the detailed steps, or if you are
ready, simply skip the step-by-step directions and move on to the next general instruction.

Learning Objectives
After you complete the tutorial (lab1), you should be able to:

• Create a new SDSoC environment project for your application from a number of available
platforms and project templates.

• Mark a function for hardware implementation.

• Build your project to generate a bitstream containing the hardware implemented function
and an executable file that invokes this hardware implemented function.

Questions and Additional Exercises

Creating a New Project
To create a project in the SDSoC™ environment that performs matrix multiplication and addition:

1. Launch the SDSoC environment using the desktop icon or the Start menu.
2. When you launch the SDSoC environment, the Workspace Launcher dialog appears. Click

on Browse to enter a workspace folder used to store your projects (you can use workspace
folders to organize your work), then click OK to dismiss the Workspace Launcher dialog.

3. The SDSoC environment window opens with the Welcome tab visible when you create a
new workspace. The tab includes links for quickly getting started, for example Create
SDSoC Project, and for accessing documentation and tutorials, for example SDSoC
User Guide. The Welcome tab can be dismissed by clicking the X icon or minimized if
you do not wish to use it.

SDSoC Environment Getting Started www.xilinx.com 18
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=18

Chapter 2: Tutorial: Creating, Building and Running a Project

4. In the Welcome tab click on Create SDSoC Project or in the SDSoC menu bar select File
> New > SDSoC Project.

5. Specify the name of the project. The figure shows labn as the Project name, but the
tutorial steps use lab1 for the first tutorial, lab2 for the second tutorial, etc.

6. From the Platform drop-down list of available platforms, select zc702.
7. From the OS drop-down list for the selected platform, select Linux.
8. Click Next.

The Templates page appears, containing source code examples for the selected platform.

SDSoC Environment Getting Started www.xilinx.com 19
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=19

Chapter 2: Tutorial: Creating, Building and Running a Project

9. From the list of application templates, select Matrix Multiplication and Addition and
click Finish.

10. The standard build configurations are SDDebug, SDEstimate, and SDRelease. To get
the best runtime performance, switch to use the SDRelease configuration by clicking
on the project and selecting SDRelease from the Build icon, or by right-clicking the
project and selecting Build Configurations > Set Active > SDRelease. The SDRelease
build configuration uses a higher compiler optimization setting than the SDDebug build
configuration.

The Build icon provides a drop-down menu for selecting the build configuration and
building the project. Clicking on the Build icon builds the project.

SDSoC Environment Getting Started www.xilinx.com 20
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=20

Chapter 2: Tutorial: Creating, Building and Running a Project

The SDSoC Project Overview panel provides a summary of the project settings.

When you build an SDSoC application, you use a build configuration (a collection of tool
settings, folders and files). Each build configuration has a different purpose. SDDebug
builds the application with extra information in the ELF (compiled and linked program)
that you need to run the debugger. The debug information in an ELF increases the size of
the file and makes your application information visible. The SDRelease option provides the
same ELF file as the SDDebug option with the exception that it has no debug information.
The SDEstimate option is used to run the SDSoC environment in a mode used to estimate
the performance of the application (how fast it runs), which requires different settings
and steps (see Tutorial: Estimating System Performance).

SDSoC Environment Getting Started www.xilinx.com 21
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=21

Chapter 2: Tutorial: Creating, Building and Running a Project

Marking Functions for Hardware Implementation
This application has two hardware functions. One hardware function, mmult, multiplies two
matrices to produce a matrix product, and the second hardware function, madd, adds two
matrices to produce a matrix sum. These hardware functions are combined to compute a
matrix multiply-add function. Both hardware functions mmult and madd are specified to be
implemented in hardware.

SDSoC Environment Getting Started www.xilinx.com 22
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=22

Chapter 2: Tutorial: Creating, Building and Running a Project

1. The SDSoC Project Overview window provides a central location for setting project values.
Click on the tab labeled <name of project> (if the tab is not visible, double-click on the
project.sdsoc file in the Project Explorer tab) and in the Hardware Functions section, click

on the Add Hardware icon to invoke a dialog to specify hardware functions.

SDSoC Environment Getting Started www.xilinx.com 23
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=23

Chapter 2: Tutorial: Creating, Building and Running a Project

2. Ctrl-click (press the Ctrl key and left click) on the mmult and madd functions to select
them in the "Matching elements" list. Click OK, and observe that both functions have
been added to the Hardware Functions list.

Alternatively, you can expand mmult.cpp and madd.cpp in the Project Explorer, right
click on mmult and madd functions, and select Toggle HW/SW (when the function is
already marked for hardware, you will see Toggle HW/SW [H]). When you have a source
file open in the editor, you can also select hardware functions in the Outline window.

SDSoC Environment Getting Started www.xilinx.com 24
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=24

Chapter 2: Tutorial: Creating, Building and Running a Project

CAUTION! Not all functions can be implemented in hardware. See the SDSoC Environment
User Guide (UG1027), Coding Guidelines for more information.

Building a Design with Hardware Accelerators
To build a project and generate an executable, bitstream, and SD Card boot image:

1. Right-click lab1 in the Project Explorer and select Build Project from the context menu
that appears.

The SDSoC™ system compiler stdout is directed to the Console tab. The functions selected
for hardware are compiled using Vivado® HLS into IP blocks and integrated into a
generated Vivado tools hardware system based on the selected base platform. The system
compiler then invokes Vivado synthesis, place and route tools to build a bitstream, and
invokes the ARM GNU compiler and linker to generate an application ELF executable file.

2. Because the Vivado synthesis process takes some time, instead of building the project you
have the option to import the pre-built files into your workspace with these steps:

a. Select File > Import and then select General > Existing Projects into Workspace
and click Next.

b. Select Select archive file and click Browse to navigate to <path to
install>/SDSoC/2015.2/docs/labs/lab1_prebuilt.zip.

c. Select lab1_prebuilt.zip, and click Open.
d. Click Finish.

SDSoC Environment Getting Started www.xilinx.com 25
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=25

Chapter 2: Tutorial: Creating, Building and Running a Project

3. In the SDSoC Project Overview window, under the Reports pane, click on Data motion
to view the Data Motion Network report .

This report shows the connections done by the SDSoC environment and the types of
data transfers for each function implemented in hardware. For details, see the Tutorial:
Working with System Optimizations.

4. Open the lab1_prebuilt/SDRelease/_sds/swstubs/mmult.cpp file, to see
how the SDSoC system compiler replaced the original mmult function with one named
_p0_mmult_0 that performs transfers to and from the FPGA using cf_send and
cf_receive functions. The SDSoC system compiler also replaces calls to mmult with
_p0_mmult_0 in lab1_prebuilt/SDRelease/_sds/swstubs/main.cpp. The
SDSoC system compiler uses these rewritten source files to build the ELF that accesses
the hardware functions.

Running the Project
To run your project on a ZC702 board:

1. From Project Explorer, select the lab1_prebuilt/SDRelease directory and copy all
files inside the sd_card directory to the root of an SD card.

2. Insert the SD card into the ZC702 and power on the board.

SDSoC Environment Getting Started www.xilinx.com 26
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=26

Chapter 2: Tutorial: Creating, Building and Running a Project

3. Connect to the board from a serial terminal in the Terminal tab of the SDSoC environment.
Click the yellow-pad icon to open the settings.

4. Set up the terminal. See Connecting the Board to a Serial Terminal.

SDSoC Environment Getting Started www.xilinx.com 27
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=27

Chapter 2: Tutorial: Creating, Building and Running a Project

5. After the board boots up, you can execute the application at the Linux prompt. Type
/mnt/lab1_prebuilt.elf.

Questions and Additional Exercises
To test your understanding, answer the following questions.

• Why is the number of functions that can be implemented in hardware device-specific?

• What is the speedup obtained by implementing the mmult and madd kernels in hardware?

• What sub-tools are invoked by the SDSoC™ system compiler?

• Examine the contents of the SDRelease/_sds folder. Notice the reports folder. This
folder contains multiple log files and report (.rpt) files with detailed logs and reports from
all the tools invoked by the build.

• If you are familiar with Vivado® IP integrator, in the Project Explorer, double-click on
SDRelease/_sds/p0/ipi/zc702.xpr. This is the hardware design generated from the
application source code. Open the block diagram and inspect the generated IP blocks.

SDSoC Environment Getting Started www.xilinx.com 28
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=28

Chapter 2: Tutorial: Creating, Building and Running a Project

Answers

• The amount of programmable logic varies from one device to another. Larger devices allow
multiple functions to be implemented in hardware while smaller devices do not.

• The speedup is about 4.3 times faster. The application running on the processor takes 180k
cycles while the application running on both the processor and FPGA takes 41k cycles.

• sdscc, sds++, arm-xilinx-linux-gnueabi-gcc,
arm-xilinx-linux-gnueabi-g++, vivado_hls, vivado, bootgen

– sdscc is used to compile C language sources

– sds++ is used to compile C++ language sources and also to link the object files
created by sdscc and sds++

– arm-xilinx-linux-gnueabi-gcc is called by sdscc to generate object code for
C language sources that are targeted to the processor

– arm-xilinx-linux-gnueabi-g++ is called by sds++ to generate object code for
C++ language sources that are targeted to the processor, and also to link all the object
files to create an executable that runs on the processor

– vivado_hls is called by sdscc/sds++ to generate RTL code for C/C++ functions that
are marked for hardware implementation

– vivado is called by sds++ to generate the bitstream

– bootgen is called by sds++ to create a bootable image containing the executable that
runs on the processor along with the bitstream for the PL or FPGA logic portion of
the chip

SDSoC Environment Getting Started www.xilinx.com 29
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=29

Chapter 3

Tutorial: Working with System Optimizations
This tutorial demonstrates how you can modify your code to optimize the hardware-software
system generated by the SDSoC environment. You also learn how to find more information
about build errors so that you can correct your code.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary
detailed steps allowing you to make choices based on your skill level as you progress through
it. If you need help completing a general instruction, go to the detailed steps, or if you are
ready, simply skip the step-by-step directions and move on to the next general instruction.

Introduction to System Ports and DMA
In Zynq®-7000 All Programmable SoC device systems, the memory seen by the ARM A9
processors has two levels of on-chip cache followed by a large off-chip DDR memory. From the
programmable logic side, the SDSoC environment creates a hardware design that might contain
a Direct Memory Access (DMA) block to allow a hardware function to directly read and/or write
to the processor system memory via the system interface ports.

As shown in the simplified diagram below, the processing system (PS) block in Zynq devices
has three kinds of system ports that are used to transfer data from processor memory to the
Zynq device programmable logic (PL) and back. They are Accelerator Coherence Port (ACP)
which allows the hardware to directly access the L2 Cache of the processor in a coherent
fashion, High Performance ports 0-3 (HP0-3), which provide direct buffered access to the DDR
memory or the on-chip memory from the hardware by-passing the processor cache using
Asynchronous FIFO Interface (AFI), and General-Purpose IO ports (GP0/GP1) which allow the
processor to read/write hardware registers.

SDSoC Environment Getting Started www.xilinx.com 30
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=30

Chapter 3: Tutorial: Working with System Optimizations

Figure 3–1: Simplified Zynq + DDR Diagram Showing Memory Access Ports and Memories

When the software running on the ARM A9 processor “calls” a hardware function, it actually
calls an SDSoC environment generated stub function that calls underlying drivers to send
data from the processor memories to the hardware function and to get data back from the
hardware function to the processor memories over the three types of system ports shown:
GPx, ACP, and AFI.

The table below shows the different system ports and their properties. The SDSoC environment
automatically chooses the best possible system port to use for any data transfer, but allows you
to override this selection by using pragmas.

System
Port Properties

ACP Processor and Hardware function access the same fast cache memory as shared memory.

AFI
(HPx)

Driver must flush cache to DDR before Hardware function can read the data from DDR.

GPx Processor directly writes/reads data to/from hardware function. Inefficient for large data transfers.

Learning Objectives
After you complete the tutorial (lab2), you should be able to:

• Use pragmas to select ACP or AFI ports for data transfer

• Observe the error detection and reporting capabilities of the SDSoC environment.

If you go through the additional exercises, you can also learn to:

• Use pragmas to select different data movers for your hardware function arguments

• Understand the use of sds_alloc()

• Use pragmas to control the number of data elements that are transferred to/from the
hardware function.

SDSoC Environment Getting Started www.xilinx.com 31
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=31

Chapter 3: Tutorial: Working with System Optimizations

Creating a New Project
To create a project in the SDSoC™ environment that performs matrix multiplication and addition:

1. Launch the SDSoC environment using the desktop icon or the Start menu.
2. When you launch the SDSoC environment, the Workspace Launcher dialog appears. Click

on Browse to enter a workspace folder used to store your projects (you can use workspace
folders to organize your work), then click OK to dismiss the Workspace Launcher dialog.

3. The SDSoC environment window opens with the Welcome tab visible when you create a
new workspace. The tab includes links for quickly getting started, for example Create
SDSoC Project, and for accessing documentation and tutorials, for example SDSoC
User Guide. The Welcome tab can be dismissed by clicking the X icon or minimized if
you do not wish to use it.

4. In the Welcome tab click on Create SDSoC Project or in the SDSoC menu bar select File
> New > SDSoC Project.

5. Specify the name of the project. The figure shows labn as the Project name, but the
tutorial steps use lab1 for the first tutorial, lab2 for the second tutorial, etc.

6. From the Platform drop-down list of available platforms, select zc702.

SDSoC Environment Getting Started www.xilinx.com 32
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=32

Chapter 3: Tutorial: Working with System Optimizations

7. From the OS drop-down list for the selected platform, select Linux.
8. Click Next.

The Templates page appears, containing source code examples for the selected platform.

9. From the list of application templates, select Matrix Multiplication and Addition and
click Finish.

10. The standard build configurations are SDDebug, SDEstimate, and SDRelease. To get
the best runtime performance, switch to use the SDRelease configuration by clicking
on the project and selecting SDRelease from the Build icon, or by right-clicking the
project and selecting Build Configurations > Set Active > SDRelease. The SDRelease
build configuration uses a higher compiler optimization setting than the SDDebug build
configuration.

The Build icon provides a drop-down menu for selecting the build configuration and
building the project. Clicking on the Build icon builds the project.

SDSoC Environment Getting Started www.xilinx.com 33
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=33

Chapter 3: Tutorial: Working with System Optimizations

The SDSoC Project Overview panel provides a summary of the project settings.

When you build an SDSoC application, you use a build configuration (a collection of tool
settings, folders and files). Each build configuration has a different purpose. SDDebug
builds the application with extra information in the ELF (compiled and linked program)
that you need to run the debugger. The debug information in an ELF increases the size of
the file and makes your application information visible. The SDRelease option provides the
same ELF file as the SDDebug option with the exception that it has no debug information.
The SDEstimate option is used to run the SDSoC environment in a mode used to estimate
the performance of the application (how fast it runs), which requires different settings
and steps (see Tutorial: Estimating System Performance).

SDSoC Environment Getting Started www.xilinx.com 34
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=34

Chapter 3: Tutorial: Working with System Optimizations

Marking Functions for Hardware Implementation
This application has two hardware functions. One hardware function, mmult, multiplies two
matrices to produce a matrix product, and the second hardware function, madd, adds two
matrices to produce a matrix sum. These hardware functions are combined to compute a
matrix multiply-add function. Both hardware functions mmult and madd are specified to be
implemented in hardware.

SDSoC Environment Getting Started www.xilinx.com 35
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=35

Chapter 3: Tutorial: Working with System Optimizations

1. The SDSoC Project Overview window provides a central location for setting project values.
Click on the tab labeled <name of project> (if the tab is not visible, double-click on the
project.sdsoc file in the Project Explorer tab) and in the Hardware Functions section, click

on the Add Hardware icon to invoke a dialog to specify hardware functions.

SDSoC Environment Getting Started www.xilinx.com 36
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=36

Chapter 3: Tutorial: Working with System Optimizations

2. Ctrl-click (press the Ctrl key and left click) on the mmult and madd functions to select
them in the "Matching elements" list. Click OK, and observe that both functions have
been added to the Hardware Functions list.

Alternatively, you can expand mmult.cpp and madd.cpp in the Project Explorer, right
click on mmult and madd functions, and select Toggle HW/SW (when the function is
already marked for hardware, you will see Toggle HW/SW [H]). When you have a source
file open in the editor, you can also select hardware functions in the Outline window.

SDSoC Environment Getting Started www.xilinx.com 37
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=37

Chapter 3: Tutorial: Working with System Optimizations

CAUTION! Not all functions can be implemented in hardware. See the SDSoC Environment
User Guide (UG1027), Coding Guidelines for more information.

Specifying System Ports
The sys_port pragma allows you to override the SDSoC system compiler port selection to
choose the ACP or one of the AFI ports on the Zynq-7000 AP SoC Processing System (PS)
to access the processor memory.

1. You do not need to generate an SD card boot image to inspect the structure of the
system generated by the SDSoC system compiler, so set project linker options to prevent
generating the bit stream, boot image and build.

a. Click on the lab2 tab to select the SDSoC Project Overview.
b. Deselect the Generate Bit Stream and Generate SD Card check boxes.

2. Right-click on the top level folder for the project in Project Explorer and select Build
Project.

IMPORTANT: The build process can take approximately 5-10 minutes to complete.

SDSoC Environment Getting Started www.xilinx.com 38
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=38

Chapter 3: Tutorial: Working with System Optimizations

3. When the build completes, in the SDSoC Project Overview window, under the Reports
pane , click on Data motion to view the Data Motion Network report . The report
contains a table describing the hardware/software connectivity for each hardware function.

The right-most column (Connection) shows the type of DMA assigned to each input array
of the matrix multiplier (AXIDMA_SIMPLE= simple DMA), and the Processing System 7 IP
port used. The table below displays a partial view of the data_motion.html file, before
adding the sys_port pragma.

4. Add sys_port pragma.

a. Double-click mmult.h file in the Project Explorer view, to open the file in the
source editor.

b. Immediately preceding the declaration for the mmult function, insert the following
to specify a different system port for each of the input arrays.

#pragma SDS data sys_port(in_A:ACP, in_B:AFI)

c. Save the file.

5. Right-click the top-level folder for the project and click on Clean Project in the menu.
6. Right-click the top-level folder for the project and click on Build Project in the menu.

IMPORTANT: The build process can take approximately 5-10 minutes to complete.

SDSoC Environment Getting Started www.xilinx.com 39
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=39

Chapter 3: Tutorial: Working with System Optimizations

7. When the build completes, open the data_motion.html file.

The connection column shows the system port assigned to each input/output array
of the matrix multiplier.

Error Reporting
You can introduce errors as described in each of the following steps and note the response
from the SDSoC environment.

1. Open the source file main.cpp and remove the semicolon at the end of the std::cout
statement near the bottom of the file.

Notice how a yellow box shows up on the left edge of the line.

2. Move your cursor over the yellow box and notice that it tells you that you have a missing
semicolon.

3. Insert the semicolon at the right place and notice how the yellow box disappears.

4. Now change std::cout to std::cou and notice how a pink box shows up on the
left edge of the line.

5. Move the cursor over the pink box to see a popup displaying the “corrected” version of
the line with std::cout instead of std::cou.

6. Correct the previous error by changing std::cou to std::cout.

7. Introduce a new error by commenting out the line that declares all the variables used in
main().

8. Save and build the project. Do not wait for the build to complete.

9. You can see the error messages scrolling by on the console.
Open the SDRelease/_sds/reports/sds.log and
SDRelease/_sds/reports/sds_mmult.log files to see the detailed error reports.

Additional Exercises
NOTE: Instructions provided in this section are optional.

SDSoC Environment Getting Started www.xilinx.com 40
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=40

Chapter 3: Tutorial: Working with System Optimizations

When Linux is used as the target OS for your application, memory allocation for your
application is handled by Linux and the supporting libraries. If you declare an array on stack
within a scope (int a[10000];) or allocate it dynamically using the standard malloc() function,
what you get is a section of memory that is contiguous in the Virtual Address Space provided
by the processor and Linux. This buffer is typically split over multiple non-contiguous pages
in the Physical Address Space, and Linux automatically does the Virtual-Physical address
translation whenever the software accesses the array. However, the hardware functions and
DMAs can only access the physical address space, and so the software drivers have to explicitly
translate from the Virtual Address to the Physical Address for each array, and provide this
physical address to the DMA or hardware function. As each array may be spread across
multiple non-contiguous pages in Physical Address Space, the driver has to provide a list of
physical page addresses to the DMA. DMA that can handle a list of pages for a single array
is known as Scatter-Gather DMA. A DMA that can handle only single physical addresses is
called Simple DMA. Simple DMA is cheaper than Scatter-Gather DMA in terms of the area and
performance overheads, but it requires the use of a special allocator called sds_alloc() to
obtain physically contiguous memory for each array.

Tutorial: Creating, Building and Running a Project used sds_alloc() to allow the use of
Simple DMA. In the following exercises you force the use of other data movers such as
Scatter-Gather DMA or AXIFIFO using pragmas, modify the source code to use malloc()
instead of sds_alloc() and observe how Scatter-Gather DMA is automatically selected.

Controlling Data Mover Selection
In this exercise you add data mover pragmas to the source code from Tutorial: Creating,
Building and Running a Project (lab1) to specify the type of data mover used to transfer each
array between hardware and software. Then you build the project and view the generated
report (data_motion.html) to see the effect of these pragmas. Remember to prevent
generation of bit stream and boot files, so that your build does not synthesize the hardware.

To add data mover pragmas to specify the type of data mover used for each array:

1. Double click mmult.h in the folder view under lab1/src to bring up the source editor
panel.

2. Just above the mmult function declaration, insert the following line to specify a different
data mover for each of the arrays and save the file.

#pragma SDS data data_mover(in_A:AXIDMA_SG, in_B:AXIDMA_SIMPLE, out_C:AXIFIFO)

3. Right-click the top-level folder for the project and click Clean Project in the menu.
4. Right-click the top-level folder for the project and click Build Project in the menu.

IMPORTANT: The build process can take approximately 5 to 10 minutes to complete.

SDSoC Environment Getting Started www.xilinx.com 41
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=41

Chapter 3: Tutorial: Working with System Optimizations

5. When the build completes, in the Project Explorer view, double-click to open
SDRelease/_sds/reports/data_motion.html.

The right-most column (Connection) shows the data mover assigned to each input/output
array of the matrix multiplier.

NOTE: The Pragmas column lists the pragmas that were used. Also, the AXIFIFO
data mover has been assigned the M_AXI_GP0 port, while the other two data movers
are associated with S_AXI_ACP.

Using malloc() instead of sds_alloc()
For this exercise you start with the source used in Tutorial: Creating, Building and Running a
Project (lab1), modify the source to use malloc() instead of sds_alloc(), and observe how
the data mover changes from Simple DMA to Scatter-Gather DMA. Disable generation of the
bitstream and boot files by unselecting Generate Bit Stream and Generate SD Card. If you
are continuing from the previous section, you must delete the data mover pragma on the
mmult declaration in lab1/src/mmult.h.

1. Double-click the main.cpp in the Project Explorer view to bring up the source editor view.
2. Find all the lines to where buffers are allocated with sds_alloc(), and replace

sds_alloc() with malloc() everywhere. Also remember to replace all calls to
sds_free() with free().

3. Save your file.
4. Right-click the top-level folder for the project and click Clean Project in the menu.
5. Right-click the top-level folder for the project and click Build Project in the menu.

IMPORTANT: The build process can take approximately 5 to 10 minutes to complete.

6. When the build completes, in the Project Explorer view, double-click to open
SDRelease/_sds/reports/data_motion.html.

7. The right-most column (Connection) shows the type of DMA assigned to each
input/output array of the matrix multiplier (AXIDMA_SG = scatter gather DMA), and which
Processing System 7 IP port is used (S_AXI_ACP). You can also see on the Accelerator
Call sites table whether the allocation of the memory that is used on each transfer
is contiguous or paged.

Using Vivado HLS based Accelerator Optimizations
In this exercise, you modify the source from Lab 1 to observe the effects of Vivado HLS pragmas
on the performance of generated hardware. See SDSoC Environment User Guide (UG1027), A
Programmer’s Guide to Vivado High-Level Synthesis for more information on this topic. Enable
generation of the bitstream and boot files by selecting Generate Bit Stream and Generate
SD card. If you are continuing from the previous section, change the malloc() calls back to
sds_alloc() and free() to sds_free().

1. Double click the mmult.cpp in the Project Explorer view to bring up the source editor
view.

2. Find the lines where the pragmas HLS pipeline and HLS array_partition are
located.

SDSoC Environment Getting Started www.xilinx.com 42
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xAProgrammersGuideToVivadoHighLevelSynthesis
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf;a=xAProgrammersGuideToVivadoHighLevelSynthesis
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=42

Chapter 3: Tutorial: Working with System Optimizations

3. Remove these pragmas by commenting out the lines.

4. Save your file.

5. Right click the top-level folder for the project and click Clean Project in the menu.
6. Right click the top-level folder for the project and click Build Project in the menu.
7. After the build completes, copy the sd_card folder to an SD card and run it on the board.

Observe the performance and compare it with the performance that was seen with the
commented out pragmas present. Note that the array_partition pragmas increase
the memory bandwidth for the inner loop by allowing array elements to be read in
parallel. The pipeline pragma on the other hand performs pipelining of the loop and
allows multiple iterations of a loop to run in parallel.

Adding Pragmas to Control the Amount of Data Transferred
For this step, you use a different design template to show the use of the copy pragma. In
this template an extra parameter called dim1 is passed to the matrix multiply function. This
parameter allows the matrix multiplier function to multiply two square matrices of any size
dim1*dim1 up to a maximum of 32*32. The top level allocation for the matrices creates
matrices of the maximum size 32x32. The dim1 parameter tells the matrix multiplier function
the size of the matrices to multiply, and the data copy pragma tells the SDSoC™ environment
that it is sufficient to transfer a smaller amount of data corresponding to the actual matrix size
instead of the maximum matrix size.

1. Launch the SDSoC environment and create a new project for the zc702, Linux platform
using the matrix multiplication with variable data size design template:

a. Select File > New > SDSoC Project.
b. In the new project dialog box, type in a name for the project (for example lab2a)

c. Select zc702 and Linux.
d. Click Next.
e. Select Matrix Multiplication Data Size as the application and click Finish.
f. Mark the src/mmult_accel/mmult_accel function for hardware acceleration.

2. Set up the project to prevent building the bitstream and boot files.

3. Add data copy pragmas by double-clicking mmult_accel.h in the Project Explorer view to
bring up the source editor view.

Note the pragmas that specify a different data copy size for each of the arrays. In the
pragmas, you can use any of the scalar arguments of the function to specify the data
copy size. In this case, dim1 is used to specify the size.

#pragma SDS data copy(in_A[0:dim1*dim1])
#pragma SDS data copy(in_B[0:dim1*dim1])
#pragma SDS data copy(out_C[0:dim1*dim1])
void mmult_accel (float in_A[A_NROWS*A_NCOLS],

float in_B[A_NCOLS*B_NCOLS],
float out_C[A_NROWS*B_NCOLS],
int dim1);

4. Right-click the top-level folder for the project and click Clean Project in the menu.

SDSoC Environment Getting Started www.xilinx.com 43
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=43

Chapter 3: Tutorial: Working with System Optimizations

5. Right-click the top-level folder for the project and click Build Project in the menu.

IMPORTANT: The build process may take approximately 5 to 10 minutes to complete.

6. When the build completes, in the Project Explorer view, double-click to open
SDDebug/_sds/reports/data_motion.html.

7. Observe the second column from the right, titled Pragmas, to view the length of the
data transfer for each array. The second table shows the transfer size for each hardware
function call site.

SDSoC Environment Getting Started www.xilinx.com 44
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=44

Chapter 4

Tutorial: Debugging Your System
This tutorial demonstrates how to use the interactive debugger in the SDSoC™ environment.

First, you target your design to a standalone operating system or platform, run your standalone
application using the Xilinx SDSoC environment, and debug the application.

You then create a Linux application and use the interactive debugger to step through your code.

In this tutorial you are debugging applications running on an accelerated system.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary
detailed steps allowing you to make choices based on your skill level as you progress through
it. If you need help completing a general instruction, go to the detailed steps, or if you are
ready, simply skip the step-by-step directions and move on to the next general instruction.

Learning Objectives
After you complete the tutorial, you should be able to:

• Use the SDSoC environment to download and run your standalone application.

• Optionally step through your source code in the SDSoC environment (debug mode) and
observe various registers and memories. Note that this is limited to code running on the
ARM A9, and does not apply to code that has been converted into hardware functions.

Setting Up the Board
You need a mini USB cable to connect to the UART port on the board, which talks to a serial
terminal in the SDSoC environment. You also need a micro USB cable to connect to the
Digilent port on the board to allow downloading the bitstream and binaries. Finally, you
need to ensure that the jumpers to the side of the SD card slot are set correctly to allow
booting from an SD card.

1. Connect the mini USB cable to the UART port. See Connecting the Board to a Serial
Terminal.

SDSoC Environment Getting Started www.xilinx.com 45
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=45

Chapter 4: Tutorial: Debugging Your System

2. Ensure that the JTAG mode is set to use the Digilent cable and that the microUSB cable
is connected.

3. Set the jumpers to SD-boot mode but do not plug in an SD card. See Configuring the
Board for SD Card Boot.

4. Power on the board.

Ensure that you allow Windows to install the USB-UART driver and the Digilent driver to
enable the SDSoC environment to communicate with the board.

IMPORTANT: Make sure that the jumper settings on the board correspond to SD-boot or
JTAG-boot. Otherwise the board may power up in some other mode such as QSPI boot,
and attempt to load something from the QSPI device or other boot device, which is not
related to this lab.

Creating a Standalone Project
Create a new SDSoC™ environment project (lab3) for the ZC702 platform and Standalone OS
using the design template for Matrix Multiplication and Addition.

To create a standalone project in the SDSoC environment:

1. Launch the SDSoC environment.

2. Select File > New > SDSoC Project.
3. Specify the name of project in the Project Name text box. For example, lab3.
4. From the Platform drop-down list, select zc702.
5. From the OS drop-down list, select Standalone.

SDSoC Environment Getting Started www.xilinx.com 46
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=46

Chapter 4: Tutorial: Debugging Your System

6. Click Next.

The Templates page appears.

7. From the list of application templates, select Matrix Multiplication and Addition and
click Finish.

8. Click on the tab labeled lab3 to select the SDSoC Project Overview (if the tab is not
visible, double click on the project.sdsoc file in the Project Explorer) and in the

Hardware Functions section, click on the Add Hardware Icon to invoke the dialog to
specify hardware functions.

9. Ctrl-click (press the Ctrl key and left click) on the mmult and madd functions to select
them in the Matching Elements list. Click OK and observe that both functions have
been added to the Hardware Functions list.

10. In the Project Explorer right-click the project and select Build Project from the context
menu that appears.

SDSoC builds the project. A dialog box displaying the status of the build process appears.

IMPORTANT: The build process might take approximately 30 to 45 minutes to complete.
Instead of building the project you can save time and instead use the pre-built project.
To import a pre-built project: select File > Import and then select General > Existing
Projects into Workspace and click Next. Click Select archive file and browse to find the
lab3_standalone_prebuilt.zip file provided in the project files folder (<path to
install>/SDSoC/2015.2/docs/labs/lab3_standalone_prebuilt.zip). Click
Open. Click Finish.

NOTE: If the project is imported, its binary ELF file does not have the correct paths
for source debugging. You would need to rebuild the ELF but you do not want
to rebuild the programmable logic bitstream. In the Project Explorer expand the
lab3_standalone_prebuilt project and double-click project.sdsoc to display the
SDSoC Project Overview. In the Options panel, uncheck the Generate Bit Stream
box and leave the Generate SD Card box checked. Clean the project (right click on
lab3_standalone_prebuilt and select Clean Project) and rebuild it (right click on
lab3_standalone_prebuilt and select Build Project).

Setting up the Debug Configuration
To set up the debug configuration:

1. In the Project Explorer view click on the ELF (.elf) file in the SDDebug folder in the
lab3_standalone_prebuilt project and in the SDSoC Project Overview click on the
Debug application action. Alternatively, right-click the project and select Debug As >
Launch on Hardware (SDSoC Debugger). The Confirm Perspective Switch dialog box
appears.

IMPORTANT: Ensure that the board is switched on before debugging the project.

SDSoC Environment Getting Started www.xilinx.com 47
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=47

Chapter 4: Tutorial: Debugging Your System

2. Click Yes to switch to the debug perspective.

You are now in the Debug Perspective of the SDSoC environment. Note that the debugger
resets the system, programs and initializes the device, then breaks at the main function.
The source code is shown in the center panel, local variables in the top right corner panel
and the SDK log at the bottom right panel shows the Debug configuration log.

3. Before you start running your application you need to connect the terminal window to
the board so you can see the output from your program. Click the Terminal tab near the
bottom of the Debug window (configured with Connection Type: Serial, Port: COM<n>,

Baud Rate: 115200 baud), and then click the Connect icon to connect the terminal
to the board (which should be powered up already).

Running the Application
To run your application:

SDSoC Environment Getting Started www.xilinx.com 48
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=48

Chapter 4: Tutorial: Debugging Your System

Click the Resume icon to run your application, and observe the output in the terminal
window.

NOTE: The source code window shows the _exit function, and the terminal tab shows the
output from the matrix multiplication application.

Additional Exercises
NOTE: Instructions provided in this section are optional.

You can learn how to debug/step through the application, run in SD Boot mode and debug
a Linux application

Stepping Through the Code
The Debug perspective has many other capabilities that have not been explored in this lab. The
most important is the ability to step through the code to debug it.

SDSoC Environment Getting Started www.xilinx.com 49
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=49

Chapter 4: Tutorial: Debugging Your System

1. Right-click the folder at the top of the debug hierarchy in the Debug view, and click
Disconnect in the menu.

2. Right-click the top-level debug folder again, and click Remove all Terminated in the
menu.

3. Click on the BUG icon to launch the debugger. Then step through the code using the
step-into, step-over, and step-return buttons.

4. As you step through the code, examine the values of different variables.

IMPORTANT:

If you try to use the terminate and relaunch buttons, the SDSoC™ environment might
display an error message saying that it failed to launch. If that happens, restart the SDSoC
environment, and cycle power on the board.

If you missed Setting up the Debug Configuration and did not disable bitstream generation,
the SDSoC environment attempts to clean and rebuild the application when you try to
launch the debugger, and this can take up to 30 mins for this example.

Boot From SD Card
1. Copy the BOOT.BIN file from the sd_card folder inside the Debug folder to an SD card

using Windows file copy/paste.

2. Plug in the SD card on the ZC702 board, confirm the jumpers are set to sd-boot mode
and power on the board.

3. Ensure that the terminal tab in the SDSoC IDE is still connected, and view the output of
your application on that terminal.

Debugging Linux Applications
To debug a Linux application in the SDSoC environment:

1. Create or select a project targeted to ZC702 and Linux.

For details, see Creating a New Project.

2. Mark a function for hardware implementation.

For details, see Marking Functions for Hardware Implementation.

SDSoC Environment Getting Started www.xilinx.com 50
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=50

Chapter 4: Tutorial: Debugging Your System

3. Build a project and generate executable, bitstream, and SD Card boot image.

For details, see Building a Design with Hardware Accelerators.

IMPORTANT: Building the executable can take 30 to 60 minutes depending on your
machine. Instead of building the project you can save time and instead use the pre-built
project. To import a pre-built project: select File > Import and then select General >
Existing Projects into Workspace and click Next. Click Select archive file and browse
to find the lab3_linux_prebuilt.zip file provided in the project files folder (<path
to install>/SDSoC/2015.2/docs/labs/lab3_linux_prebuilt.zip). Click
Open. Click Finish.

NOTE: If the project is imported, its binary ELF file does not have the correct paths for
source debugging. You would need to rebuild the ELF but you do not want to rebuild the
programmable logic bitstream. In the Project Explorer expand the lab3_linux_prebuilt
project and double-click project.sdsoc to display the SDSoC Project Overview. In
the Options panel, uncheck the Generate Bit Stream box and leave the Generate SD
Card box checked. Clean the project (right click on lab3_linux_prebuilt and select Clean
Project) and rebuild it (right click on lab3_linux_prebuilt and select Build Project).

4. Click the Terminal tab near the bottom of the Debug window and confirm the settings
(Connection Type: Serial, Port: COM<n>, Baud Rate: 115200 baud).

For the COM port settings to be visible,the board must be powered up:

• Power up the board without an SD card plugged in.

• Click on the Terminal Settings icon , set the configuration and click OK.

• The terminal indicates it is connected. Click the red disconnect icon to disconnect
the terminal from the board, and power off the board.

5. Copy the contents of the generated sd_card directory to an SD card, and plug the
SD card into the ZC702 board.

6. Ensure that the board is connected to an Ethernet router using an Ethernet cable. Power
on the board. Click on the Terminal tab and click the green connection icon to connect
the terminal to the board. The Linux boot log is displayed on the terminal. Look for a
line that says Sending select for 172.19.73.248…Lease of 172.19.73.248
obtained , where the IP address assigned to your board is reported. Take a note of this
address for use in the next step.

If you do not see the IP address, type the command ifconfig in the terminal and
take a note the IP address.

7. Back in the SDSoC environment in the Target Connections view, expand Linux TCF
Agent and right-click on Linux Agent (default), then select Edit.

SDSoC Environment Getting Started www.xilinx.com 51
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=51

Chapter 4: Tutorial: Debugging Your System

8. In the Target Connection Details dialog set up the IP address and port (1534).

9. Click OK.
10. In the SDSoC Project Overview verify in the Actions pane that Connection is set to

Linux Agent and click on Debug application to go to the Debug perspective, and
run or step through your code.

NOTE: Your application output displays in the Console view, instead of the Terminal view.

SDSoC Environment Getting Started www.xilinx.com 52
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=52

Chapter 5

Tutorial: Estimating System Performance
This tutorial demonstrates how to obtain an estimate of the expected performance of an
application, without going through the entire build cycle.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary
detailed steps, allowing you to make choices based on your skill level as you progress through
it. If you need help completing a general instruction, go to the detailed steps, or if you are
ready, simply skip the step-by-step directions and move on to the next general instruction.

Learning Objectives
After you complete the tutorial, you should be able to use the SDSoC environment to obtain an
estimate of the speedup that you can expect from your selection of functions to accelerate.

Setting Up the Board

Additional Exercises

Setting Up the Board
You need a mini USB cable to connect to the UART port on the board, which talks to a serial
terminal in the SDSoC environment. You also need a micro USB cable to connect to the
Digilent port on the board to allow downloading the bitstream and binaries. Finally, you
need to ensure that the jumpers to the side of the SD card slot are set correctly to allow
booting from an SD card.

1. Connect the mini USB cable to the UART port. See Connecting the Board to a Serial
Terminal.

SDSoC Environment Getting Started www.xilinx.com 53
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=53

Chapter 5: Tutorial: Estimating System Performance

2. Ensure that the JTAG mode is set to use the Digilent cable and that the microUSB cable
is connected.

3. Set the jumpers to SD-boot mode but do not plug in an SD card. See Configuring the
Board for SD Card Boot.

4. Power on the board.

Ensure that you allow Windows to install the USB-UART driver and the Digilent driver to
enable the SDSoC environment to communicate with the board.

IMPORTANT: Make sure that the jumper settings on the board correspond to SD-boot or
JTAG-boot. Otherwise the board may power up in some other mode such as QSPI boot,
and attempt to load something from the QSPI device or other boot device, which is not
related to this lab.

Setting up the Project to Use SDEstimate Configuration
To create a project and use the SDEstimate configuration:

1. Create a new project in the SDSoC™ environment (lab4) for the ZC702 platform and
Standalone using the design template for Matrix Multiplication and Addition.

2. Click on the tab labeled lab4 to view the SDSoC Project Overview. If the tab is not visible,
in the Project Explorer double click on the project.sdsoc file under the lab4 project.

3. In the Hardware Functions section, click on the Add Hardware Function icon () to
invoke a dialog for specifying hardware functions.

SDSoC Environment Getting Started www.xilinx.com 54
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=54

Chapter 5: Tutorial: Estimating System Performance

4. Ctrl-click (press the Ctrl key and left click simultaneously) on the madd and mmult
functions in the Matching elements: list and notice that they appear in the Qualified
name and location: list. Click OK.

5. In the SDSoC Project Overview in the Actions panel, click on Estimate speedup. This
selects the SDEstimate build configuration and performs the estimation flow.

6. The Build project dialog appears and asks if you want to build the project. Click OK.

The SDSoC environment builds the project. A dialog box displaying the status of the
build process appears.

After the build is over, you can see an initial report. This report contains a hardware-only
estimate summary and has a link that can be clicked to obtain the software run data,
which updates the report with comparison of hardware implementation versus the
software-only information.

Comparing Software and Hardware Performance

IMPORTANT: Ensure that the board is switched on before performing the instructions provided
in this section.

To collect software run data and generate a performance estimation report:

1. Open the SDSoC Report Viewer.

SDSoC Environment Getting Started www.xilinx.com 55
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=55

Chapter 5: Tutorial: Estimating System Performance

2. Click the Click Here hyperlink on the viewer to launch the application on the board.

The Run application to dialog box appears.

3. Select a pre-existing connection, or create a new connection to connect to the target
board.

SDSoC Environment Getting Started www.xilinx.com 56
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=56

Chapter 5: Tutorial: Estimating System Performance

4. Click OK.

The debugger resets the system, programs and initializes the FPGA, runs a software-only
version of the application. It then collects performance data and uses it to display the
performance estimation report.

Changing Scope of Overall Speedup Comparison
In the Performance Estimation Report, the first line shows the estimated speedup for the
top-level function (referred to as perf root). This function is set to "main" by default. However,
there might be code that you would like to exclude form this comparison, for example
allocating buffers, initialization and setup. If you wish to see the overall speedup when
considering some other function, you can do this by specifying a different function as the root
for performance estimation flow. The flow works with the assumption that all functions selected
for hardware acceleration are children of the root.

SDSoC Environment Getting Started www.xilinx.com 57
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=57

Chapter 5: Tutorial: Estimating System Performance

1. To change the top-level function used for estimating performance speedup (perf root),
click on SDSoC in the upper right corner of the SDSoC IDE to return to the SDSoC
perspective and in the Project Explorer, right-click the function that you are interested in
selecting as root and click the menu item Mark as root for estimate flow.

A small R icon appears on the top left of that function listed as shown below. The selected
function is a parent of the functions that are selected for hardware acceleration.

2. In the Project Explorer, right click on the project and select Clean Project, then Build
Project. In the SDSoC Project Overview, click on Estimate speedup to generate the
estimation report again and you get the overall speedup estimate based on the function
that you selected.

Additional Exercises
NOTE: Instructions provided in this section are optional.

SDSoC Environment Getting Started www.xilinx.com 58
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=58

Chapter 5: Tutorial: Estimating System Performance

You can learn how to use the performance estimation flow when Linux is used as the target OS
for your application.

Using the Performance Estimation Flow With Linux
To use the performance estimation flow with Linux:

1. Create a new project in the SDSoC™ environment (lab4_linux) for the ZC702 platform and
Linux OS using the design template for Matrix Multiplication and Addition.

2. Click on the tab labeled lab4_linux (if the tab is not visible, in the Project Explorer
tab under the lab4_linux project double click on project.sdsoc). In the Hardware

Functions section, click on the Add Hardware Function icon to invoke a dialog
for specifying hardware functions.

3. Ctrl-click (press the Ctrl key and left click simultaneously) on the madd and mmult
functions in the Matching elements: list, and notice that they appear in the Qualified
name and location: list below. Click OK.

4. In the SDSoC Project Overview in the Actions panel, click on Estimate speedup. This
selects the SDEstimate build configuration and performs the estimation flow.

5. The Build project dialog appears and asks if you want to build the project. Click OK.

The SDSoC environment builds the project. A dialog box displaying the status of the
build process appears.

6. Copy the contents of the sd_card folder under SDEstimate to an sd card and boot up
the board. Ensure that the board is connected to an Ethernet router using an Ethernet
cable. Ensure that a serial terminal is connected.

7. Power on the board, and notice the Linux boot log displayed on the terminal. Look for a
line that says Sending select for 172.19.73.248…Lease of 172.19.73.248
obtained or something similar, where the IP address assigned to your board is reported.

NOTE: This address is for use in the next step. If you miss this statement in the log as it
scrolls by, you can obtain the IP address of the board by running the command ifconfig

8. Back in the SDSoC environment in the Target Connections view, expand Linux TCF
Agent and right-click on Linux Agent (default), then select Edit.

SDSoC Environment Getting Started www.xilinx.com 59
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=59

Chapter 5: Tutorial: Estimating System Performance

9. In the Target Connection Details dialog set up the IP address and port (1534) and click OK.

10. Open the SDSoC Report Viewer.
11. Click the Click Here hyperlink on the viewer to launch the application on the board.

The Run application to dialog box appears.

12. Select the Linux Agent connection and click OK.

The SDSoC environment runs a software-only version of the application. It then collects
performance data and uses it to display the performance estimation report.

SDSoC Environment Getting Started www.xilinx.com 60
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=60

Chapter 6

Tutorial: Task Pipelining Optimizations
This tutorial demonstrates how to modify your code to optimize the hardware-software system
generated by the SDSoC environment using task-level pipelining. You can observe the impact
of pipelining on performance.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary
detailed steps allowing you to make choices based on your skill level as you progress through
it. If you need help completing a general instruction, go to the detailed steps, or if you are
ready, simply skip the step-by-step directions and move on to the next general instruction.

Task Pipelining
If there are multiple calls to an accelerator in your application, then you can structure your
application such that you can pipeline these calls and overlap the setup and data transfer with
the accelerator computation. In the case of the matrix multiply application, the following
events take place:
1. Matrices A and B are transferred from the main memory to accelerator local memories.
2. The accelerator executes.
3. The result, C, is transferred back from the accelerator to the main memory.

The following figure illustrates the matrix multiply design on the left side and on the right side
a time-chart of these events for two successive calls that are executing sequentially.

Figure 6–1: Sequential Execution of Matrix Multiply Calls

The following figure shows the two calls executing in a pipelined fashion. The data transfer
for the second call starts as soon as the data transfer for the first call is finished and overlaps
with the execution of the first call. To enable the pipelining, however, we need to provide
extra local memory to store the second set of arguments while the accelerator is computing
with the first set of arguments. The SDSoC environment generates these memories, called
multi-buffers, under the guidance of the user.

SDSoC Environment Getting Started www.xilinx.com 61
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=61

Chapter 6: Tutorial: Task Pipelining Optimizations

Figure 6–2: Pipelined Execution of Matrix Multiply Calls

Specifying task level pipelining requires rewriting the calling code using the pragmas
async(id) and wait(id). The SDSoC environment includes an example that demonstrates
the use of async pragmas and this Matrix Multiply Pipelined example is used in this tutorial.

Learning Objectives
After you complete the tutorial, you should be able to:
• Use the SDSoC environment to optimize your application to reduce runtime by performing

task-level pipelining.
• Observe the impact on performance of pipeline calls to an accelerator when overlapping

accelerator computation with input and output communication.

Task Pipelining in the Matrix Multiply Example
The SDSoC environment includes a matrix multiply pipelined example that demonstrates the
use of async pragmas to implement task-level pipelining. This exercise allows you to see the
runtime improvement that comes from using this technique.

1. Create a new SDSoC environment project (lab5) by selecting File > New > SDSoC Project.
Enter the project name lab5, select the ZC702 Platform and Linux OS, and click Next

2. The Templates page appears, containing source code examples for the selected platform.
From the list of application templates, select Empty Application and click Finish

3. Using your operating system file manager, navigate to <path to
install>/SDSoC/2015.2/samples/mmult_pipelined and copy the source files
in that directory (mmult_accel.cpp, mmult_accel.h and mmult.cpp) into the
src folder of the newly created project.

4. Mark the function mmult_accel in the file mmult_accel.cpp for hardware using
the Add Hardware Function icon in the SDSoC Project Overview or Toggle HW/SW
in the Project Explorer.

SDSoC Environment Getting Started www.xilinx.com 62
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=62

Chapter 6: Tutorial: Task Pipelining Optimizations

5. Change the build configuration to SDRelease and build the project.

IMPORTANT: The build process might take approximately 30 to 45 minutes to complete.
Instead of building the project you can save time and instead use the pre-built project.
To import a pre-built project: select File > Import and then select General > Existing
Projects into Workspace and click Next. Click Select archive file and browse to
find the lab5_prebuilt.zip file provided in the project files folder (<path to
install>/SDSoC/2015.2/docs/labs/lab5_prebuilt.zip). Click Open. Click
Finish.

6. Copy the files obtained in the sd_card folder to an SD card, set up a terminal and run
the generated application on the board. You need to specify the pipeline depth as an
argument to the application. Run the application with pipeline depth of 1, 2 and 3 and
note the performance obtained.

SDSoC Environment Getting Started www.xilinx.com 63
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=63

Appendix A

Troubleshooting
If you encounter issues using the SDSoC™ environment after installation, consult this section
for potential issues and their resolution.

Path Names Too Long
When using Vivado tools on a Windows platform, path names longer than 260 characters
may result in the error message:

ERROR: [Common 17-143] Path length exceeds 260-Byte maximum allowed
by Windows: <LongPathtoFileName>.

Possible solutions to shorten path lengths or to avoid this are described in Answer Record AR#
52787. For example, use shorter path names, map a new drive letter to a lower directory in the
path, and other methods.

Use Correct Tool Scripts
In each shell used to run the SDSoC™ environment, use only the environment setup scripts
corresponding to the Xilinx tool releases or recommended PATH environment settings.

Running Xilinx design tool environment setup scripts from other or additional releases in the
same shell will result in incorrect SDSoC environment behaviors or results.

SDSoC Environment Getting Started www.xilinx.com 64
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/support/answers/52787.htm
http://www.xilinx.com/support/answers/52787.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=64

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips

References
These documents provide supplemental material useful with this guide:

1. SDSoC Environment User Guide: Getting Started (UG1028), also available in the docs folder
of the SDSoC environment.

2. SDSoC Environment User Guide (UG1027), also available in the docs folder of the SDSoC
environment.

3. SDSoC Environment User Guide: Platforms and Libraries (UG1146), also available in the docs
folder of the SDSoC environment.

4. UltraFast Embedded Design Methodology Guide (UG1046)

5. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC User Guide
(UG850)

6. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

7. PetaLinux Tools Documentation Workflow Tutorial (UG1156)

8. Vivado® Design Suite Documentation

9. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

SDSoC Environment Getting Started www.xilinx.com 65
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/support.html
http://www.xilinx.com/support.html
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1028-sdsoc-getting-started.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1027-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1146-sdsoc-platforms-and-libraries.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
http://www.xilinx.com/cgi-bin/docs/bkdoc?k=zc702_zvik;d=ug850-zc702-eval-bd.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug1156-petalinux-tools-workflow-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=65

Appendix B: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials
are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence,
or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials),
including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions
of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe
or for use in any application requiring fail-safe performance; you assume sole risk and liability
for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which
can be viewed at www.xilinx.com/legal.htm#tos.

© Copyright 2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado,
Zynq, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. All other trademarks are the property of their respective owners.

SDSoC Environment Getting Started www.xilinx.com 66
UG1028 (v2015.2) July 20, 2015

Send Feedback

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1028&Title=SDSoC%20User%20Guide%3A%20Getting%20Started&releaseVersion=2015.2&docPage=66

	SDSoC User Guide: Getting Started
	Revision History
	Table of Contents
	Ch. 1: Introduction
	User Design Flow
	System Requirements
	Obtaining and Managing a License
	Downloading
	Installing
	Linux Environment Setup Script
	Windows Environment Setup Script

	Validating Installation
	Configuring the Board for SD Card Boot
	Connecting the Board to a Serial Terminal
	Executing a Pre-built Application
	Building and Executing an Example Application
	Building an Application on a Linux Host
	Building an Application on a Windows Host
	Executing an Example Application

	Ch. 2: Tutorial: Creating, Building and Running a Project
	Learning Objectives
	Creating a New Project
	Marking Functions for Hardware Implementation
	Building a Design with Hardware Accelerators
	Running the Project
	Questions and Additional Exercises

	Ch. 3: Tutorial: Working with System Optimizations
	Introduction to System Ports and DMA
	Learning Objectives
	Creating a New Project
	Marking Functions for Hardware Implementation
	Specifying System Ports
	Error Reporting
	Additional Exercises
	Controlling Data Mover Selection
	Using malloc() instead of sds_alloc()
	Using Vivado HLS based Accelerator Optimizations
	Adding Pragmas to Control the Amount of Data Transferred

	Ch. 4: Tutorial: Debugging Your System
	Learning Objectives
	Setting Up the Board
	Creating a Standalone Project
	Setting up the Debug Configuration
	Running the Application
	Additional Exercises
	Stepping Through the Code
	Boot From SD Card
	Debugging Linux Applications

	Ch. 5: Tutorial: Estimating System Performance
	Learning Objectives
	Setting Up the Board
	Setting up the Project to Use SDEstimate Configuration
	Comparing Software and Hardware Performance
	Changing Scope of Overall Speedup Comparison
	Additional Exercises
	Using the Performance Estimation Flow With Linux

	Ch. 6: Tutorial: Task Pipelining Optimizations
	Task Pipelining
	Learning Objectives
	Task Pipelining in the Matrix Multiply Example

	Appx. A: Troubleshooting
	Path Names Too Long
	Use Correct Tool Scripts

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Please Read: Important Legal Notices

