
SDSoC Environment Tutorial

Introduction

UG1028 (v2016.4) March 9, 2017

Revision History

The following table shows the revision history for this document.

Date Version Revision
03/09/2017 2016.4 Tutorial validated for SDx™ IDE 2016.4.

11/30/2016 2016.3 Initial documentation release for SDx IDE 2016.3, which includes both the
SDSoC™ Environment and the SDAccel™ Environment. Due to this major
change in tool architecture, this document has undergone substantial
changes in structure and content since the previous release.

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

2

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=2
www.xilinx.com

Table of Contents
Introduction

Flow Overview

Lab 1: Introduction to the SDSoC Development Environment ...5

Performance Estimation

Lab 2: Performance Estimation ...16

Application Code Optimization

Lab 3: Optimize the Application Code ...23

Accelerator Optimization

Lab 4: Optimize the Accelerator Using Directives ..33

Lab 5: Task-Level Pipelining ..35

Debugging

Lab 6: Debug ..39

Lab 7: Hardware Debug ..44

Additional Resources and Legal Notices

References ...54

Please Read: Important Legal Notices...55

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

3

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=3
www.xilinx.com

Introduction
The SDSoC™ (Software-Defined System On Chip) environment is an Eclipse-based Integrated
Development Environment (IDE) for implementing heterogeneous embedded systems using the
Zynq®-7000 All Programmable SoC and Zynq UltraScale+™ MPSoC platforms. The SDSoC
environment provides an embedded C/C++ application development experience with an easy to
use Eclipse IDE, and comprehensive design tools for heterogeneous Zynq SoC development to
software engineers and system architects. The SDSoC environment includes a full-system
optimizing C/C++ compiler that provides automated software acceleration in programmable
logic combined with automated system connectivity generation. The application programming
model within the SDSoC environment should be intuitive to software engineers. An application
is written as C/C++ code, with the programmer identifying a target platform and a subset of the
functions within the application to be compiled into hardware. The SDSoC system compiler then
compiles the application into hardware and software to realize the complete embedded system
implemented on a Zynq device, including a complete boot image with firmware, operating
system, and application executable.

The SDSoC environment abstracts hardware through increasing layers of software abstraction
that includes cross-compilation and linking of C/C++ functions into programmable logic fabric
as well as the ARM CPUs within a Zynq device. Based on a user specification of program
functions to run in programmable hardware, the SDSoC environment performs program
analysis, task scheduling and binding onto programmable logic and embedded CPUs, as well as
hardware and software code generation that automatically orchestrates communication and
cooperation among hardware and software components.

The SDSoC environment 2016.4 release includes support for the ZC702, ZC706, MicroZed,
ZedBoard and Zybo development boards featuring the Zynq-7000 AP SoC, and for the ZCU102
development board featuring the Zynq UltraScale+ MPSoC. Additional platforms are available
from partners. For more information, visit the SDSoC development environment web page.

Chapter 1

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

4

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=4
www.xilinx.com

Flow Overview

Lab 1: Introduction to the SDSoC Development
Environment

This tutorial demonstrates how you can use the SDSoC environment to create a new project
using available templates, mark a function for hardware implementation, build a hardware
implemented design, and run the project on a ZC702 board.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary detailed
steps allowing you to make choices based on your skill level as you progress through it. If you need help
completing a general instruction, go to the detailed steps, or if you are ready, simply skip the step-by-step
directions and move on to the next general instruction.

NOTE: You can complete this tutorial even if you do not have a ZC702 board. When creating the SDSoC
environment project, select your board and one of the available applications if the suggested template
Matrix Multiplication and Addition is not found. For example, boards such as the MicroZed with smaller
Zynq-7000 devices offer the Matrix Multiplication and Addition (area reduced) application as an
available template. Any application can be used to learn the objectives of this tutorial.

Learning Objectives

After you complete the tutorial (lab1), you should be able to:

• Create a new SDSoC environment project for your application from a number of available
platforms and project templates.

• Mark a function for hardware implementation.
• Build your project to generate a bitstream containing the hardware implemented function

and an executable file that invokes this hardware implemented function.

Creating a New Project

1. Launch the SDx IDE 2016.4 using the desktop icon or the Start menu.
2. When you launch the SDx IDE, the Workspace Launcher dialog appears. Click Browse to

enter a workspace folder used to store your projects (you can use workspace folders to
organize your work), then click OK to dismiss the Workspace Launcher dialog.

Chapter 2

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

5

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=5
www.xilinx.com

3. The SDx IDE window opens with the Welcome tab visible when you create a new workspace.
The tab includes links for Creating a new Xilinx SDx Project, Importing an existing project,
Tutorials, and Web Resources. Clicking any of these links takes you to further options
available under each link. For example, to access documentation and tutorials, clicking on
Tutorials takes you to the Tutorials page which has links for SDSoC and SDAccel related
documents. The Welcome tab can be dismissed by clicking the X icon or minimized if you do
not wish to use it.

4. From the SDx IDE menu bar select File→New→Xilinx SDx Project. The New Project dialog
box opens.

5. Specify the name of the project, for example lab1.
6. Click Next.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

6

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=6
www.xilinx.com

7. From the Choose Hardware Platform page, select the zc702 platform.

NOTE: If a custom platform is being used that is not in the list of supported platforms, click Add Custom
Platform to add the custom platform.

8. Click Next.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

7

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=7
www.xilinx.com

9. From the System configuration drop-down list for the selected platform, select Linux SMP
(Zynq 7000). Leave all other fields at their default values.

10. Click Next.

The Templates page appears, containing source code examples for the selected platform.

11. From the list of application templates, select Matrix Multiplication and Addition and click
Finish.

12. The standard build configurations are Debug and Release, and you can create additional build
configurations. To get the best runtime performance, switch to use the Release configuration
using one of the three methods illustrated below. The Release build configuration uses a

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

8

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=8
www.xilinx.com

higher compiler optimization setting than the Debug build configuration. The SDx Project
Settings window also allows you to select the active configuration or create a build
configuration.

The Build icon provides a drop-down menu for selecting the build configuration and building
the project. Clicking on the Build icon builds the project.

In the Project Explorer you can right-click on the project to select the build configuration.

The SDx Project Settings window includes a Build Configurations drop-down, where you can
select the active configuration or create a build configuration.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

9

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=9
www.xilinx.com

The SDx Project Settings window provides a summary of the project settings.

When you build an SDx application, you use a build configuration (a collection of tool
settings, folders and files). Each build configuration has a different purpose. Debug builds the
application with extra information in the ELF (compiled and linked program) that you need to
run the debugger. The debug information in an ELF increases the size of the file and makes
your application information visible. The Release configuration provides the same ELF file as
the Debug configuration with the exception that it has no debug information. The Estimate
Performance option can be selected in any build configuration and is used to run the SDSoC
environment in a mode used to estimate the performance of the application (how fast it runs),
which requires different settings and steps (see Performance Estimation).

Marking Functions for Hardware Implementation

This application has two hardware functions. One hardware function, mmult, multiplies two
matrices to produce a matrix product, and the second hardware function, madd, adds two
matrices to produce a matrix sum. These hardware functions are combined to compute a matrix
multiply-add function. Both functions mmult and madd are specified to be implemented in
hardware.

When the SDSoC environment creates the project from a template, it specifies the hardware
functions for you. In cases where hardware functions have been removed or have not been
specified, follow the steps below to add hardware functions.

NOTE: For this lab, you do not need to mark functions for hardware – the template code for matrix
multiplication and addition has already marked them. If you don't have the madd and mmult functions
marked as HW Functions, you could do the following to mark them as HW Functions.

1. The SDx Project Settings window provides a central location for setting project values. Click on
the tab labeled lab1 (if the tab is not visible, double-click on the project.sdx file in the Project
Explorer tab) and in the HW functions panel, click on the Add HW Functions icon
to invoke a dialog to specify hardware functions.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

10

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=10
www.xilinx.com

2. Ctrl-click (press the Ctrl key and left click) on the mmult and madd functions to select them in
the "Matching elements" list. Click OK, and observe that both functions have been added to
the hardware functions list.

Alternatively, you can expand mmult.cpp and madd.cpp in the Project Explorer, right click on
mmult and madd functions, and select Toggle HW/SW (when the function is already marked
for hardware, you will see the function mmult(float[], float[], float[]): void [H] in
the Project Explorer tab). When you have a source file open in the editor, you can also select
hardware functions in the Outline window.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

11

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=11
www.xilinx.com

CAUTION! Not all functions can be implemented in hardware. See the SDSoC Environment User Guide
(UG1027) for more information.

Building a Design with Hardware Accelerators

To build a project and generate an executable, bitstream, and SD Card boot image:

1. Right-click lab1 in the Project Explorer and select Build Project from the context menu that
appears.

The SDSoC™ system compiler stdout is directed to the Console tab. The functions selected
for hardware are compiled using Vivado® HLS into IP blocks and integrated into a generated
Vivado tools hardware system based on the selected base platform. The system compiler
then invokes Vivado synthesis, place and route tools to build a bitstream, and invokes the
ARM GNU compiler and linker to generate an application ELF executable file.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

12

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1027-sdsoc-user-guide.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1027-sdsoc-user-guide.pdf;a=xCallingAndCodingGuidelines
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=12
www.xilinx.com

2. In the SDx Project Settings window, under the Reports tab, below the Project Explorer tab,
double-click to open the Data Motion Network Report.

This report shows the connections done by the SDx environment and the types of data
transfers for each function implemented in hardware. For details, see Application Code
Optimization.

3. Open the lab1/Release/_sds/swstubs/mmult.cpp file, to see how the SDx system compiler
replaced the original mmult function with one named _p0_mmult_1_noasync that performs
transfers to and from the FPGA using cf_send_i and cf_wait functions. The SDx system
compiler also replaces calls to mmult with _p0_mmult_1_noasync in lab1/Release/_sds/

swstubs/main.cpp. The SDx system compiler uses these rewritten source files to build the
ELF that accesses the hardware functions.

Running the Project

To run your project on a ZC702 board:

1. From Project Explorer, select the lab1/Release directory and copy all files inside the
sd_card directory to the root of an SD card.

2. Insert the SD card into the ZC702 and power on the board.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

13

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=13
www.xilinx.com

3. Connect to the board from a serial terminal in the SDx Terminal tab (or connect via Putty/
Teraterm with Baud Rate: 115200, Data bits: 8, Stop bits: 1, Parity: None and Flow Control:
None). Click the icon to open the settings.

4. Keep the default settings in the Connect to serial port window and click OK.
5. After the board boots up, you can execute the application at the Linux prompt. Type /mnt/

lab1.elf.

Questions and Additional Exercises

To test your understanding, answer the following questions.

• Why is the number of functions that can be implemented in hardware device-specific?
• What is the speedup obtained by implementing the mmult and madd kernels in hardware?
• What sub-tools are invoked by the SDx™ system compiler?
• Examine the contents of the Release/_sds folder. Notice the reports folder. This folder

contains multiple log files and report (.rpt) files with detailed logs and reports from all the
tools invoked by the build.

• If you are familiar with Vivado® IP integrator, in the Project Explorer, double-click on
Release/_sds/p0/ipi/zc702.xpr. This is the hardware design generated from the
application source code. Open the block diagram and inspect the generated IP blocks.

Answers

• The amount of programmable logic varies from one device to another. Larger devices allow
multiple functions to be implemented in hardware while smaller devices do not.

• The speedup is about 3 times faster. The application running on the processor takes about
194k cycles while the application running on both the processor and FPGA takes about 64k
cycles.

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

14

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=14
www.xilinx.com

• sdscc, sds++, arm-linux-gnueabihf-gcc, arm-linux-gnueabihf-g++, vivado_hls,
vivado, bootgen

◦ sdscc is used to compile C language sources
◦ sds++ is used to compile C++ language sources and also to link the object files created

by sdscc and sds++

◦ arm-linux-gnueabihf-gcc is called by sdscc to generate object code for C language
sources that are targeted to the processor

◦ arm-linux-gnueabihf-g++ is called by sds++ to generate object code for C++
language sources that are targeted to the processor, and also to link all the object files
to create an executable that runs on the processor

◦ vivado_hls is called by sdscc/sds++ to generate RTL code for C/C++ functions that
are marked for hardware implementation

◦ vivado is called by sds++ to generate the bitstream
◦ bootgen is called by sds++ to create a bootable image containing the executable that

runs on the processor along with the bitstream for the PL or FPGA logic portion of the
chip

Chapter 2: Flow Overview

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

15

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=15
www.xilinx.com

Performance Estimation

Lab 2: Performance Estimation

This tutorial demonstrates how to obtain an estimate of the expected performance of an
application, without going through the entire build cycle.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary detailed
steps, allowing you to make choices based on your skill level as you progress through it. If you need help
completing a general instruction, go to the detailed steps, or if you are ready, simply skip the step-by-step
directions and move on to the next general instruction.

NOTE: You can complete this tutorial even if you do not have a ZC702 board. When creating the SDSoC
environment project, select your board and one of the available templates, if the suggested template Matrix
Multiplication and Addition is not found. For example, boards such as the MicroZed with smaller
Zynq-7000 devices offer the Matrix Multiplication and Addition (area reduced) application as an
available template. A different application can be used to learn the objectives of this tutorial, as long as the
application exits (this is a requirement to run the instrumented application on the board to collect software
runtime data). Consult your board documentation for setup information.

Learning Objectives

After you complete the tutorial, you should be able to use the SDSoC environment to obtain an
estimate of the speedup that you can expect from your selection of functions implemented in
hardware.

Setting Up the Board

You need a mini USB cable to connect to the UART port on the board, which talks to a serial
terminal in the SDx IDE. You also need a micro USB cable to connect to the Digilent port on the
board to allow downloading the bitstream and binaries. Finally, you need to ensure that the
jumpers to the side of the SD card slot are set correctly to allow booting from an SD card.

1. Connect the mini USB cable to the UART port.

Chapter 3

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

16

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=16
www.xilinx.com

2. Ensure that the JTAG mode is set to use the Digilent cable and that the micro USB cable is
connected.

3. Set the jumpers to SD-boot mode but do not plug in an SD card.
4. Power on the board.

Ensure that you allow Windows to install the USB-UART driver and the Digilent driver to
enable the SDx IDE to communicate with the board.

IMPORTANT: Make sure that the jumper settings on the board correspond to SD-boot or JTAG-boot.
Otherwise the board may power up in some other mode such as QSPI boot, and attempt to load
something from the QSPI device or other boot device, which is not related to this lab.

Setting up the Project for Performance Estimation

To create a project and use the Estimate Performance option in a build configuration:

1. Create a new project in the SDx™ IDE 2016.4 (lab2) for the ZC702 platform and Standalone
OS (Zynq 7000) as System configuration using the design template for Matrix
Multiplication and Addition.

2. Click on the tab labeled lab2 to view the SDx Project Settings. If the tab is not visible, in the
Project Explorer double click on the project.sdx file under the lab2 project.

3. In the HW Functions panel, observe that the madd and mmult functions already appear in the
list of functions marked for hardware – template projects in the SDx environment include
information for automating the process of marking hardware functions.

4. If the HW Functions panel did not list any functions, you would click on the Add HW
Function icon to invoke a dialog for specifying hardware functions. Ctrl-click (press
the Ctrl key and left click simultaneously) on the madd and mmult functions in the Matching
elements: list and notice that they appear in the Qualified name and location: list.

Chapter 3: Performance Estimation

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

17

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=17
www.xilinx.com

5. Performance estimation can be run using any build configuration. Instead of selecting Debug
or Release as the Active Configuration, you could instead click on the Manage build
configuration for the project icon next to the active configuration.

6. You can choose an available configuration or you can create a new configuration. New
configuration can be created from an existing configuration (as a starting point) or it can be
created from scratch. Using the Debug build configuration or another build configuration
copied from Debug will compile the code with -O0 using GCC, so the software performance
will be significantly degraded.

7. In the SDx Project Settings in the Options panel, check the Estimate Performance box. This
enables the estimation flow.

8. The Build toolbar button provides a drop-down menu for selecting the build configuration
and building the project. Clicking the Build icon builds the project. If the Estimate
Performance option is checked, then performance estimation also occurs. Click the Build
button on the toolbar.

The SDx IDE builds the project. A dialog box displaying the status of the build process
appears.

After the build is over, you can see an initial report. This report contains a hardware-only
estimate summary and has a link that can be clicked to obtain the software run data, which
updates the report with comparison of hardware implementation versus the software-only
information.

Chapter 3: Performance Estimation

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

18

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=18
www.xilinx.com

Comparing Software and Hardware Performance

IMPORTANT: Ensure that the board is switched on before performing the instructions provided in this
section.

To collect software run data and generate a performance estimation report:

1. After the build completes, the SDSoC Report Viewer tab opens.
2. Click the Click Here hyperlink on the viewer to launch the application on the board.

The Run application to get its performance dialog box appears.

3. Select a pre-existing connection, or create a new connection to connect to the target board.

4. Click OK.

The debugger resets the system, programs and initializes the FPGA, and runs a software-only
version of the application. It then collects performance data and uses it to display the
performance estimation report.

Chapter 3: Performance Estimation

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

19

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=19
www.xilinx.com

Changing Scope of Overall Speedup Comparison

In the Performance, speedup and resource estimation report, the Summary section shows the
estimated speedup for the top-level function (referred to as perf root). This function is set to
"main" by default. However, there might be code that you would like to exclude from this
comparison, for example allocating buffers, initialization and setup. If you wish to see the overall
speedup when considering some other function, you can do this by specifying a different
function as the root for performance estimation flow. The flow works with the assumption that
all functions selected for hardware acceleration are children of the root.

1. In the SDx Project Settings window, click the browse button on the Root function field to
change the root for the estimate flow.

A small R icon appears on the top left of that function listed as shown below. The selected
function is a parent of the functions that are selected for hardware acceleration.

Chapter 3: Performance Estimation

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

20

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=20
www.xilinx.com

2. In the Project Explorer, right click on the project and select Clean Project, then Build
Project. In the SDx Project Settings, click on Estimate performance to generate the
estimation report again and you get the overall speedup estimate based on the function that
you selected.

Additional Exercises

NOTE: Instructions provided in this section are optional.

You can learn how to use the performance estimation flow when Linux is used as the target OS
for your application.

Using the Performance Estimation Flow With Linux

To use the performance estimation flow with Linux:

1. Create a new project in the SDx™ IDE (lab2_linux) for the ZC702 platform and System
Configuration set to Linux SMP (Zynq 7000) using the design template for Matrix
Multiplication and Addition.

2. Click on the tab labeled lab2_linux (if the tab is not visible, in the Project Explorer tab under
the lab2_linux project double click on project.sdx). In the HW Functions panel, observe
that the madd and mmult functions already appear in the list of functions marked for hardware
– template projects in the SDx environment include information for automating the process of
marking hardware functions.

3. If the HW Functions panel did not list any functions, you would click on the Add HW
Functions icon to invoke a dialog for specifying hardware functions. Ctrl-click (press
the Ctrl key and left click simultaneously) on the madd and mmult functions in the Matching
elements: list, and notice that they appear in the Qualified name and location: list below.

4. In the SDx Project Settings in the Options panel, check the Estimate performance box. This
enables the performance estimation flow for the current build configuration.

Chapter 3: Performance Estimation

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

21

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=21
www.xilinx.com

5. The Build icon provides a drop-down menu for selecting the build configuration and building
the project. Clicking on the Build icon builds the project and with the Estimate performance
option checked, the performance estimation flow runs. Click Build.

The SDx IDE builds the project. A dialog box displaying the status of the build process
appears.

6. For this lab, you will also need an Ethernet cable to connect to the board. Ensure that the
board is connected to an Ethernet router using the Ethernet cable. First, copy the contents of
the sd_card folder under the build configuration to an sd card and boot up the board. Then
make sure that a serial terminal is also connected.

7. Note the Linux boot log displayed on the terminal. Look for a line that says Sending select

for 172.19.73.248…Lease of 172.19.73.248 obtained or something similar, where the
IP address assigned to your board is reported.

NOTE: This address is for use in the next step. If you miss this statement in the log as it scrolls by, you can
obtain the IP address of the board by running the command ifconfig in the terminal window at the
prompt.

8. Back in the SDx IDE in the Target Connections view, expand Linux TCF Agent and right-click
on Linux Agent (default), then select Edit.

9. In the Target Connection Details dialog set up the IP address and port (1534) and click OK.

10. Open the SDSoC Report Viewer.
11. Click the Click Here hyperlink on the viewer to launch the application on the board.

The Run application to dialog box appears.

12. Select the Linux Agent connection and click OK.

The SDx IDE runs a software-only version of the application. It then collects performance
data and uses it to display the performance estimation report.

Chapter 3: Performance Estimation

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

22

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=22
www.xilinx.com

Application Code Optimization

Lab 3: Optimize the Application Code

This tutorial demonstrates how you can modify your code to optimize the hardware-software
system generated by the SDx environment. You will also learn how to find more information
about build errors so that you can correct your code.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary detailed
steps allowing you to make choices based on your skill level as you progress through it. If you need help
completing a general instruction, go to the detailed steps, or if you are ready, simply skip the step-by-step
directions and move on to the next general instruction.

NOTE: You can complete this tutorial even if you do not have a ZC702 board. When creating the SDSoC
environment project, select your board and one of the available applications if the suggested template
Matrix Multiplication and Addition is not found. For example, boards such as the MicroZed with smaller
Zynq-7000 devices offer the Matrix Multiplication and Addition (area reduced) application as an
available template. In this tutorial you are not asked to run the application on the board, and you can
complete the tutorial following the steps for the ZC702 to satisfy the learning objectives.

Introduction to System Ports and DMA

In Zynq®-7000 All Programmable SoC device systems, the memory seen by the ARM A9
processors has two levels of on-chip cache followed by a large off-chip DDR memory. From the
programmable logic side, the SDx IDE creates a hardware design that might contain a Direct
Memory Access (DMA) block to allow a hardware function to directly read and/or write to the
processor system memory via the system interface ports.

As shown in the simplified diagram below, the processing system (PS) block in Zynq devices has
three kinds of system ports that are used to transfer data from processor memory to the Zynq
device programmable logic (PL) and back. They are Accelerator Coherence Port (ACP) which
allows the hardware to directly access the L2 Cache of the processor in a coherent fashion, High
Performance ports 0-3 (HP0-3), which provide direct buffered access to the DDR memory or the
on-chip memory from the hardware bypassing the processor cache using Asynchronous FIFO
Interface (AFI), and General-Purpose IO ports (GP0/GP1) which allow the processor to read/write
hardware registers.

Chapter 4

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

23

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=23
www.xilinx.com

Figure 1: Simplified Zynq + DDR Diagram Showing Memory Access Ports and Memories

Zynq Programmable Logic (PL)

ARM A9
Processor

L2 Cache
Memory

Memory
Controller

DMA1 DMA2

Hardware
Function1

Hardware
Function2

DDR
Memory

GPx ACP HPx/AFI

Zynq Processing System (PS)

X14709_060515

When the software running on the ARM A9 processor “calls” a hardware function, it actually
invokes an sds++ generated stub function that in turn calls underlying drivers to send data from
the processor memory to the hardware function and to get data back from the hardware
function to the processor memories over the three types of system ports shown: GPx, ACP, and
AFI.

The table below shows the different system ports and their properties. The sds++ compiler
automatically chooses the best possible system port to use for any data transfer, but allows you
to override this selection by using pragmas.

System
Port

Properties

ACP Hardware functions have cache coherent access to DDR via the PS L2 cache.
AFI (HP) Hardware functions have fast non-cache coherent access to DDR via the PS

memory controller.
GP Processor directly writes/reads data to/from hardware function. Inefficient for

large data transfers.
MIG Hardware functions access DDR from PL via a MIG IP memory controller.

Learning Objectives

After you complete the tutorial (lab3), you should be able to:

• Use pragmas to select ACP or AFI ports for data transfer
• Observe the error detection and reporting capabilities of the SDSoC environment.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

24

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=24
www.xilinx.com

If you go through the additional exercises, you can also learn to:

• Use pragmas to select different data movers for your hardware function arguments
• Understand the use of sds_alloc()
• Use pragmas to control the number of data elements that are transferred to/from the

hardware function.

Creating a New Project

1. Create a new project in the SDx™ IDE (lab3) for the ZC702 platform and Linux SMP (Zynq
7000) System configuration using the design template for Matrix Multiplication and
Addition.

2. Click on the tab labeled lab3 to view the SDx Project Settings. If the tab is not visible, in the
Project Explorer double click on the project.sdx file under the lab3 project.

3. In the HW Functions panel, observe that the madd and mmult functions already appear in the
list of functions marked for hardware acceleration.

4. To get the best runtime performance, switch to use the Release configuration by clicking on
the Active Build Configuration option and then selecting Release. You could also select
Release from the Build icon, or by right-clicking the project and selecting Build
Configurations→Set Active→Release. The Release build configuration uses a higher
compiler optimization setting than the Debug build configurations.

Specifying System Ports

The sys_port pragma allows you to override the SDSoC system compiler port selection to
choose the ACP or one of the AFI ports on the Zynq-7000 AP SoC Processing System (PS) to
access the processor memory.

1. You do not need to generate an SD card boot image to inspect the structure of the system
generated by the SDx system compiler, so set project linker options to prevent generating the
bit stream, boot image and build.

a. Click on the lab3 tab to select the SDx Project Settings.

b. Deselect the Generate bitstream and Generate SD card image check boxes.

2. Right-click on the top level folder for the project in Project Explorer and select Build Project.
3. When the build completes, in the Reports panel, double-click Data Motion Network Report

to view the Data Motion Network report. The report contains a table describing the hardware/
software connectivity for each hardware function.

The right-most column (Connection) shows the type of DMA assigned to each input array of
the matrix multiplier (AXIDMA_SIMPLE= simple DMA), and the Processing System 7 IP port
used. The table below displays a partial view of the data_motion.html file, before adding the
sys_port pragma.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

25

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=25
www.xilinx.com

4. Add sys_port pragma.

a. Double-click mmultadd.h file in the Project Explorer view, under the src folder, to open
the file in the source editor.

b. Immediately preceding the declaration for the mmult function, insert the following to
specify a different system port for each of the input arrays.

#pragma SDS data sys_port(A:ACP, B:AFI)

c. Save the file.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

26

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=26
www.xilinx.com

5. Right-click the top-level folder for the project and click on Clean Project in the menu.
6. Right-click the top-level folder for the project and click on Build Project in the menu.
7. When the build completes, click on the tab showing the Data Motion Network Report

(data_motion.html file).
8. Click anywhere in the Data Motion Network Report pane and select Refresh from the context

menu.

The connection column shows the system port assigned to each input/output array of the
matrix multiplier.

9. Delete the pragma #pragma SDS data sys_port(A:ACP, B:AFI) and save the file.

Error Reporting

You can introduce errors as described in each of the following steps and note the response from
the SDx IDE.

1. Open the source file main.cpp from the src folder and remove the semicolon at the end of
the std::cout statement near the bottom of the file.

Notice that a yellow box shows up on the left edge of the line.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

27

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=27
www.xilinx.com

2. Move your cursor over the yellow box and notice that it tells you that you have a missing
semicolon.

3. Insert the semicolon at the right place and notice how the yellow box disappears.
4. Now change std::cout to std::cou and notice how a pink box shows up on the left edge of

the line.

5. Move the cursor over the pink box to see a popup displaying the “corrected” version of the
line with std::cout instead of std::cou.

6. Correct the previous error by changing std::cou to std::cout.
7. Introduce a new error by commenting out the line that declares all the variables used in

main().

8. Save and build the project. Do not wait for the build to complete.
9. You can see the error messages scrolling by on the console. Open the Release/_sds/

reports/sds_main.log and Release/_sds/reports/sds_mmult.log files to see the
detailed error reports.

10. Uncomment the line where the variables are declared.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

28

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=28
www.xilinx.com

Additional Exercises

NOTE: Instructions provided in this section are optional.

When Linux is used as the target OS for your application, memory allocation for your application
is handled by Linux and the supporting libraries. If you declare an array on stack within a scope
(int a[10000];) or allocate it dynamically using the standard malloc() function, what you get
is a section of memory that is contiguous in the Virtual Address Space provided by the
processor and Linux. This buffer is typically split over multiple non-contiguous pages in the
Physical Address Space, and Linux automatically does the Virtual-Physical address translation
whenever the software accesses the array. However, the hardware functions and DMAs can only
access the physical address space, and so the software drivers have to explicitly translate from
the Virtual Address to the Physical Address for each array, and provide this physical address to
the DMA or hardware function. As each array may be spread across multiple non-contiguous
pages in Physical Address Space, the driver has to provide a list of physical page addresses to
the DMA. DMA that can handle a list of pages for a single array is known as Scatter-Gather
DMA. A DMA that can handle only single physical addresses is called Simple DMA. Simple DMA
is cheaper than Scatter-Gather DMA in terms of the area and performance overheads, but it
requires the use of a special allocator called sds_alloc() to obtain physically contiguous
memory for each array.

Flow Overview used the mult_add template to allow the use of Simple DMA. In the following
exercises you force the use of other data movers such as Scatter-Gather DMA or AXIFIFO using
pragmas, modify the source code to use malloc() instead of sds_alloc() and observe how
Scatter-Gather DMA is automatically selected.

Controlling Data Mover Selection

In this exercise you add data mover pragmas to the source code from lab3 to specify the type of
data mover used to transfer each array between hardware and software. Then you build the
project and view the generated report (data_motion.html) to see the effect of these pragmas.
Remember to prevent generation of bit stream and boot files, so that your build does not
synthesize the hardware.

To add data mover pragmas to specify the type of data mover used for each array:

1. Double-click mmultadd.h in the folder view under lab3/src to bring up the source editor
panel.

2. Just above the mmult function declaration, insert the following line to specify a different data
mover for each of the arrays and save the file.

#pragma SDS data data_mover(A:AXIDMA_SG, B:AXIDMA_SIMPLE, C:AXIFIFO)

3. Right-click the top-level folder for the project and click Clean Project in the menu.
4. Right-click the top-level folder for the project and click Build Project in the menu.

IMPORTANT: The build process can take approximately 5 to 10 minutes to complete.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

29

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=29
www.xilinx.com

5. When the build completes, in the Project Explorer view, double-click to open Data Motion
Report from the Reports tab.

The right-most column (Connection) shows the data mover assigned to each input/output
array of the matrix multiplier.

NOTE: The Pragmas column lists the pragmas that were used. Also, the AXIFIFO data mover has been
assigned the M_AXI_GP0 port, while the other two data movers are associated with S_AXI_ACP.

6. Remove the pragma #pragma SDS data data_mover(A:AXIDMA_SG, B:AXIDMA_SIMPLE,

C:AXIFIFO) that you entered in step 2 and save the file.

Using malloc() instead of sds_alloc()

For this exercise you start with the source used in lab3, modify the source to use malloc()

instead of sds_alloc(), and observe how the data mover changes from Simple DMA to
Scatter-Gather DMA.

1. Double-click the main.cpp in the Project Explorer view, under src folder, to bring up the
source editor view.

2. Find all the lines to where buffers are allocated with sds_alloc(), and replace sds_alloc()

with malloc() everywhere. Also remember to replace all calls to sds_free() with free().
3. Save your file.
4. Right-click the top-level folder for the project and click Clean Project in the menu.
5. Right-click the top-level folder for the project and click Build Project in the menu.

IMPORTANT: The build process can take approximately 5 to 10 minutes to complete.

6. When the build completes, in the Project Explorer view, double-click to open Release/_sds/

reports/data_motion.html.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

30

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=30
www.xilinx.com

7. The right-most column (Connection) shows the type of DMA assigned to each input/output
array of the matrix multiplier (AXIDMA_SG = scatter gather DMA), and which Processing
System 7 IP port is used (S_AXI_ACP). You can also see on the Accelerator Call sites table
whether the allocation of the memory that is used on each transfer is contiguous or paged.

8. Undo all the changes made in step 2 and save the file.

Adding Pragmas to Control the Amount of Data Transferred

For this step, you use a different design template to show the use of the copy pragma. In this
template an extra parameter called M is passed to the matrix multiply function. This parameter
allows the matrix multiplier function to multiply two square matrices of any size M*M up to a
maximum of 32*32. The top level allocation for the matrices creates matrices of the maximum
size 32x32. The M parameter tells the matrix multiplier function the size of the matrices to
multiply, and the data copy pragma tells the SDSoC™ environment that it is sufficient to transfer
a smaller amount of data corresponding to the actual matrix size instead of the maximum matrix
size.

1. Launch the SDx environment and create a new project for the zc702, Linux platform using the
matrix multiplication with variable data size design template:

a. Select File→New→Xilinx SDx Project.

b. In the new project dialog box, type in a name for the project (for example lab3a)

c. Select zc702 and Linux SMP (Zynq 7000).

d. Click Next.

e. Select Matrix Multiplication Data Size as the application and click Finish.

f. Note that the mmult_accel function has been marked for hardware acceleration.

2. Set up the project to prevent building the bitstream and boot files by deselecting the
Generate bitstream and Generate SD Card Image checkboxes in the Options panel.

3. Note that data copy pragmas are present in the code. They can be viewed by double-clicking
mmult_accel.h in the Project Explorer view (under the src folder) to bring up the source
editor view.

Note the pragmas that specify a different data copy size for each of the arrays. In the
pragmas, you can use any of the scalar arguments of the function to specify the data copy
size. In this case, M is used to specify the size.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

31

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=31
www.xilinx.com

#pragma SDS data copy(A[0:M*M], B[0:M*M], C[0:M*M])
#pragma SDS data access_pattern(A:SEQUENTIAL, B:SEQUENTIAL, C:SEQUENTIAL)
void mmult_accel (float A[N*N],

float B[N*N],
float C[N*N],
int M);

4. Right-click the top-level folder for the project and click Clean Project in the menu.
5. Right-click the top-level folder for the project and click Build Project in the menu.
6. When the build completes, in the Project Explorer view, double-click to open Data Motion

Network Report in the Reports tab.
7. Observe the second column from the right, titled Pragmas, to view the length of the data

transfer for each array. The second table shows the transfer size for each hardware function
call site.

Chapter 4: Application Code Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

32

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=32
www.xilinx.com

Accelerator Optimization

Lab 4: Optimize the Accelerator Using Directives

In this exercise, you modify the source file in the project to observe the effects of Vivado HLS
pragmas on the performance of generated hardware. See SDSoC Environment Optimization
Guide (UG1235) for more information on this topic.

1. Create a new project in the SDx™ environment (lab4) for the ZC702 Platform and Linux SMP
(Zynq 7000) System Configuration using the design template for Matrix Multiplication and
Addition.

2. Click on the tab labeled lab4 to view the SDx Project Settings. If the tab is not visible, in the
Project Explorer double click on the project.sdx file under the lab4 project.

3. In the HW Functions panel, observe that the madd and mmult functions already appear in the
list of functions marked for hardware acceleration.

4. To get the best runtime performance, switch to use the Release configuration by clicking on
the Active Build Configuration option and then selecting Release. You could also select
Release from the Build icon, or by right-clicking the project and selecting Build
Configuration→Set Active→Release. The Release build configuration uses a higher compiler
optimization setting than the Debug build configurations.

5. Double click the mmult.cpp in the Project Explorer view to bring up the source editor view.
6. Find the lines where the pragmas HLS pipeline and HLS array_partition are located.

Chapter 5

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

33

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1235-sdsoc-optimization-guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1235-sdsoc-optimization-guide.pdf
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=33
www.xilinx.com

7. Remove these pragmas by commenting out the lines.

8. Save your file.
9. Right click the top-level folder for the project and click Build Project in the menu.
10. After the build completes, copy the lab4/Release/sd_card folder to an SD card.
11. Insert the SD card into the ZC702 board and power on the board.
12. Connect to the board from a serial terminal in the SDx Terminal tab of the SDx IDE. Click the +

icon to open the settings.
13. After the board boots up, you can execute the application at the Linux prompt. Type /mnt/

lab4.elf.

Observe the performance and compare it with the performance that was seen with the
commented out pragmas present (compare it with the results of lab1). Note that the
array_partition pragmas increase the memory bandwidth for the inner loop by allowing
array elements to be read in parallel. The pipeline pragma on the other hand performs
pipelining of the loop and allows multiple iterations of a loop to run in parallel.

Chapter 5: Accelerator Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

34

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=34
www.xilinx.com

Lab 5: Task-Level Pipelining

This lab demonstrates how to modify your code to optimize the hardware-software system
generated by the SDx IDE using task-level pipelining. You can observe the impact of pipelining
on performance.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary detailed
steps allowing you to make choices based on your skill level as you progress through it. If you need help
completing a general instruction, go to the detailed steps, or if you are ready, simply skip the step-by-step
directions and move on to the next general instruction.

NOTE: You can complete this tutorial even if you do not have a ZC702 board. When creating the SDSoC
environment project, select your board. The tutorial instructions ask you to add source files created for an
application created for the ZC702. If your board contains a smaller Zynq-7000 device, after adding source
files you need to edit the file mmult_accel.cpp to reduce resource usage (in the accelerator source file you
will see #pragma_HLS_array_partition which sets block factor=16; instead, set block factor=8).

Task Pipelining

If there are multiple calls to an accelerator in your application, then you can structure your
application such that you can pipeline these calls and overlap the setup and data transfer with
the accelerator computation. In the case of the matrix multiply application, the following events
take place:

1. Matrices A and B are transferred from the main memory to accelerator local memories.
2. The accelerator executes.
3. The result, C, is transferred back from the accelerator to the main memory.

The following figure illustrates the matrix multiply design on the left side and on the right side a
time-chart of these events for two successive calls that are executing sequentially.

Chapter 5: Accelerator Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

35

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=35
www.xilinx.com

Figure 2: Sequential Execution of Matrix Multiply Calls

A

B

C

MM
Accelerator

A B Compute C

A B Compute C

Time

X14705_060515

The following figure shows the two calls executing in a pipelined fashion. The data transfer for
the second call starts as soon as the data transfer for the first call is finished and overlaps with
the execution of the first call. To enable the pipelining, however, we need to provide extra local
memory to store the second set of arguments while the accelerator is computing with the first
set of arguments. The SDSoC environment generates these memories, called multi-buffers,
under the guidance of the user.

Figure 3: Pipelined Execution of Matrix Multiply Calls

A

B

C

MM
Accelerator

A B Compute C

A B Compute C

X14706_060515

Specifying task level pipelining requires rewriting the calling code using the pragmas async(id)

and wait(id). The SDSoC environment includes an example that demonstrates the use of
async pragmas and this Matrix Multiply Pipelined example is used in this tutorial.

Learning Objectives

After you complete the tutorial, you should be able to:

• Use the SDx IDE to optimize your application to reduce runtime by performing task-level
pipelining.

• Observe the impact on performance of pipeline calls to an accelerator when overlapping
accelerator computation with input and output communication.

Chapter 5: Accelerator Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

36

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=36
www.xilinx.com

Task Pipelining in the Matrix Multiply Example

The SDx IDE includes a matrix multiply pipelined example that demonstrates the use of async
pragmas to implement task-level pipelining. This exercise allows you to see the runtime
improvement that comes from using this technique.

1. Create a new SDx project (lab5) by selecting File→New→Xilinx SDx Project. Enter the project
name lab5, select the ZC702 Platform and Linux SMP (Zynq-7000) System Configuration,
and click Next.

2. The Templates page appears, containing source code examples for the selected platform.
From the list of application templates, select Empty Application and click Finish.

3. Using your operating system file manager, navigate to <path to install>/SDx/2016.4/

samples/mmult_pipelined and copy the source files in that directory (mmult_accel.cpp,
mmult_accel.h, and mmult.cpp) into the src folder of the newly created project (for example
./lab5/src).

4. Click on lab5 in SDx and from the context menu select Refresh. This adds all the copied
sources in the previous step to the project.

5. Change the build configuration to Release.
6. Mark the function mmult_accel in the file mmult_accel.cpp for hardware using the Add HW

Functions.. icon in the SDx Project Settings or Toggle HW/SW in the Project Explorer.
7. Build the project.

Chapter 5: Accelerator Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

37

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=37
www.xilinx.com

8. Copy the files obtained in the sd_card folder to an SD card, set up a terminal and run the
generated application on the board. You need to specify the pipeline depth as an argument
to the application. Run the application with pipeline depth of 1, 2, and 3 and note the
performance obtained.

Chapter 5: Accelerator Optimization

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

38

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=38
www.xilinx.com

Debugging

Lab 6: Debug

This tutorial demonstrates how to use the interactive debugger in the SDx IDE.

First, you target your design to a standalone operating system or platform, run your standalone
application using the SDx IDE, and debug the application.

In this tutorial you are debugging applications running on an accelerated system.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary detailed
steps allowing you to make choices based on your skill level as you progress through it. If you need help
completing a general instruction, go to the detailed steps, or if you are ready, simply skip the step-by-step
directions and move on to the next general instruction.

NOTE: You can complete this tutorial even if you do not have a ZC702 board. When creating the SDx
project, select your board and one of the available applications if the suggested template Matrix
Multiplication and Addition is not found. For example, boards such as the MicroZed with smaller
Zynq-7000 devices offer the Matrix Multiplication and Addition (area reduced) application as an
available template. Any application can be used to learn the objectives of this tutorial.

Learning Objectives

After you complete the tutorial, you should be able to:

• Use the SDx IDE to download and run your standalone application.
• Optionally step through your source code in the SDx IDE (debug mode) and observe

various registers and memories. Note that this is limited to code running on the ARM A9,
and does not apply to code that has been converted into hardware functions.

Setting Up the Board

You need a mini USB cable to connect to the UART port on the board, which talks to a serial
terminal in the SDx IDE. You also need a micro USB cable to connect to the Digilent port on the
board to allow downloading the bitstream and binaries. Finally, you need to ensure that the
jumpers to the side of the SD card slot are set correctly to allow booting from an SD card.

1. Connect the mini USB cable to the UART port.

Chapter 6

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

39

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=39
www.xilinx.com

2. Ensure that the JTAG mode is set to use the Digilent cable and that the micro USB cable is
connected.

3. Set the jumpers to SD-boot mode but do not plug in an SD card.
4. Power on the board.

Ensure that you allow Windows to install the USB-UART driver and the Digilent driver to
enable the SDx IDE to communicate with the board.

IMPORTANT: Make sure that the jumper settings on the board correspond to SD-boot or JTAG-boot.
Otherwise the board may power up in some other mode such as QSPI boot, and attempt to load
something from the QSPI device or other boot device, which is not related to this lab.

Creating a Standalone Project

Create a new SDx™ project (lab6) for the ZC702 platform and Standalone OS using the design
template for Matrix Multiplication and Addition.

To create a standalone project in the SDx IDE:

1. Launch the SDx IDE.
2. Select File→New→Xilinx SDx Project.
3. Specify the name of the project (for example, lab6) in the Project name field. Click Next.
4. From the Platform list, select zc702. Click Next.
5. From the System Configuration drop-down list, select Standalone OS (Zynq 7000). Click

Next.
6. From the list of application templates, select Matrix Multiplication and Addition and click

Finish.
7. Click on the tab labeled lab6 to select the SDx Project Settings (if the tab is not visible,

double click the project.sdx file in the Project Explorer) and in the HW functions panel,
observe that the mmult and madd functions were marked as hardware functions when the
project was created.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

40

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=40
www.xilinx.com

8. If hardware functions were removed or not marked, you would click on the Add HW
Functions icon to invoke the dialog box to specify hardware functions. Ctrl-click (press the
Ctrl key and left click) on the mmult and madd functions to select them in the Matching
Elements list. Click OK and observe that both functions have been added to the Hardware
Functions list.

9. In the Project Explorer right-click the project and select Build Project from the context menu
that appears.

SDSoC builds the project. A dialog box displaying the status of the build process appears.

Setting up the Debug Configuration

To set up the debug configuration:

1. In the Project Explorer view click on the ELF (.elf) file in the Debug folder in the lab6 project
and in the toolbar click on the Debug icon or use the Debug icon pull-down menu to select
Debug As→Launch on Hardware (SDSoC Debugger). Alternatively, right-click the project
and select Debug As→Launch on Hardware (SDSoC Debugger). The Confirm Perspective
Switch dialog box appears.

IMPORTANT: Ensure that the board is switched on before debugging the project.

2. Click Yes to switch to the debug perspective.

You are now in the Debug Perspective of the SDx IDE. Note that the debugger resets the
system, programs and initializes the device, then breaks at the main function. The source code
is shown in the center panel, local variables in the top right corner panel and the SDx log at
the bottom right panel shows the Debug configuration log.

3. Before you start running your application you need to connect a serial terminal to the board
so you can see the output from your program. In this example, we are using the SDSoC
environment Terminal view invoked by Window→Show View→Other and selecting
Terminal→Terminal. Click the Terminal tab near the bottom of the Debug perspective and
then click the Connect icon to connect the terminal to the board (which should be
powered up already). Use the following settings: (Connection Type: Serial, Port: COM<n>,
Baud Rate: 115200 baud).

Running the Application

To run your application:

• Click the Resume icon to run your application, and observe the output in the terminal
window.

NOTE: The source code window shows the _exit function, and the terminal tab shows the output from
the matrix multiplication application.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

41

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=41
www.xilinx.com

Additional Exercises

NOTE: Instructions provided in this section are optional.

You can learn how to debug/step through the application and debug a Linux application.

Stepping Through the Code

The Debug perspective has many other capabilities that have not been explored in this lab. The
most important is the ability to step through the code to debug it.

1. Continuing in lab6, right-click debug hierarchy in the Debug view (System Debugger using
Debug_lab6.elf), and click Disconnect in the menu.

2. Right-click the top-level debug folder again, and click Remove all Terminated in the menu.
3. Click on the BUG icon to launch the debugger. Then step through the code using the step-

into, step-over, and step-return buttons.
4. As you step through the code, examine the values of different variables.

Debugging Linux Applications

To debug a Linux application in the SDSoC environment:

1. Create a project, for example lab6_linux, targeted to the Platform ZC702 and the System
Configuration Linux SMP (Zynq 7000). From the list of application templates, select Matrix
Multiplication and Addition.

For details, see Creating a New Project.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

42

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=42
www.xilinx.com

2. Observe that the functions mmult and madd are marked for hardware implementation in the
HW functions table of the SDx Project Settings.

For details, see Marking Functions for Hardware Implementation.

3. Build a project and generate executable, bitstream, and SD card boot image. For the Active
build configuration, use Debug.

For details, see Building a Design with Hardware Accelerators.

IMPORTANT: Building the executable can take 30 to 60 minutes depending on your machine. Instead of
building the project you can save time and instead use the pre-built project. (To minimize disk usage in
the SDSoC installation, the imported project might contain fewer files than a project you build, but it
includes the files required to complete the tutorial.) To import a pre-built project: select File→Import and
then select General→Existing Projects into Workspace and click Next. Click Select archive file and
browse to find the lab6_linux.zip file provided in the project files folder (<path to install>/SDx/
2016.4/docs/labs/lab6_linux.zip). Click Open. Click Finish.

NOTE: If the project is imported, its binary ELF file does not have the correct paths for source debugging.
You would need to rebuild the ELF but you do not want to rebuild the programmable logic bitstream. In
the Project Explorer expand the lab6_linux project and double-click project.sdx to display the SDx
Project Settings. In the Options panel, uncheck the Generate bitstream box and leave the Generate
SD card image box checked. Clean the project (right click on lab6_linux and select Clean Project) and
rebuild it (right click on lab6_linux and select Build Project).

4. Here we are using the SDSoC environment Terminal view invoked from Window→Show
View→Other and selecting Terminal→Terminal. Click the Terminal tab near the bottom of
the Debug window and confirm the settings (Connection Type: Serial, Port: COM<n>, Baud
Rate: 115200 baud).

For the COM port settings to be visible,the board must be powered up:

• Power up the board without an SD card plugged in.

• Click on the Terminal Settings icon , set the configuration and click OK.
• The terminal indicates it is connected. Click the red disconnect icon to disconnect the

terminal from the board, and power off the board.

5. Copy the contents of the generated sd_card directory to an SD card, and plug the SD card
into the ZC702 board.

6. Ensure that the board is connected to your computer via an Ethernet cable. Power on the
board. Click on the Terminal tab and click the green connection icon to connect the terminal
to the board. The Linux boot log is displayed on the terminal. When you see the terminal
prompt, set the IP address by entering ifconfig eth0 192.168.0.1. Your computer must
be configured so the Ethernet adapter is on the same subnetwork as the ZC702 board. On a
Windows host system, open Control Panel\Network and Internet\Network Connections,
and double-click to open the Local Connection for the Ethernet Adapter. In the Networking
tab, select Internet Protocol Version 4 (TCP/IPv4), and click on the Properties button. On
the General tab, select Use the Following IP Address and enter 192.168.0.11. Click OK.

If your subnetwork already has a device at 192.168.0.11, you can choose another address, as
long as it begins with 192.168.0.x.

7. Back in the SDSoC environment in the Target Connections panel, expand Linux TCF Agent
and right-click on Linux Agent (default), then select Edit.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

43

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=43
www.xilinx.com

8. In the Target Connection Details dialog set up the IP address and port (1534).

9. Click OK.
10. In the Project Explorer click on the ELF file to select it and click on the Debug icon in the

toolbar (or use the Debug icon pull-down menu to select Debug As→Launch on Hardware
(SDSoC Debugger)) to go to the Debug perspective, and run or step through your code.

NOTE: Your application output displays in the Console view instead of the Terminal view.

Lab 7: Hardware Debug

This lab provides step-by-step instructions to create a project, enable trace, run the application,
and view the trace visualization. This tutorial assumes that the host PC is connected directly to
the Zynq-7000 board, and that the board is a Xilinx ZC702 board. This tutorial is applicable to
other boards and configurations. However, the details of the steps might differ slightly. The
tutorial assumes you have already installed and started the SDx IDE and chosen a workspace.

NOTE: This tutorial is separated into steps, followed by general instructions and supplementary detailed
steps, allowing you to make choices based on your skill level as you progress through it. If you need help
completing a general instruction, go to the detailed steps, or if you are ready, simply skip the step-by-step
directions and move on to the next general instruction.

NOTE: You can complete this tutorial even if you do not have a ZC702 board. When creating the SDx
environment project, select your board and one of the available templates, if the suggested template Matrix
Multiplication is not found. For example, boards such as the MicroZed with smaller Zynq-7000 devices offer
the Matrix Multiplication (area reduced) application as an available template. Any application can be
used to learn the objectives of this tutorial.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

44

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=44
www.xilinx.com

Tracing a Standalone or Bare-Metal Project

You can learn how to create a new project, configure the project to enable the SDSoC trace
feature, build the project, and run the application on the board.

Creating a New Project

1. Select File→New→Xilinx SDx Project.
2. In the New Project wizard, name the project mmult_trace and click Next.
3. In the Choose Hardware Platform page, select zc702 and click Next.

NOTE: Select the appropriate platform if you are using something other than the ZC702 board.

4. Select Standalone OS (Zynq 7000) as the System Configuration.
5. Select Matrix Multiplication as the template for this project and click Finish.
6. In the Project Explorer, expand the various folders by clicking on the triangle , then open

the mmult.cpp file.

7. Change the number of tests symbol NUM_TESTS from 1024 to 10, then save and close the
file.

8. In the SDx Project Settings (in the mmult_trace tab), notice that mmult_accel in the HW
Functions section of the project overview is already marked for implementation in hardware.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

45

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=45
www.xilinx.com

Configuring the Project to Enable the Trace Feature in the Options Section

1. In the Project Settings window, click the checkbox for Enable event tracing.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

46

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=46
www.xilinx.com

Building the Project

1. Click the Build button to start building the project. (This will take a while.)

IMPORTANT: The build process might take approximately 15 to 20 minutes to complete. Instead of
building the project you can save time and instead use the pre-built project. (To minimize disk usage in
the SDx installation, the imported project might contain fewer files than a project you build, but it includes
the files required to complete the tutorial.) To import a pre-built project: select File→Import and then
select General→Existing Projects into Workspace and click Next. Click Select archive file and browse
to find the lab7a_mmult_trace.zip file provided in the project files folder (<path to install>/SDx/
2016.4/docs/labs/lab7a_mmult_trace.zip). Click Open. Click Finish.

After all the hardware functions are implemented in Vivado HLS, and after the Vivado IP
Integrator design is created, you will see Inserted # hardware monitor cores displayed in
the console. This message validates that the trace feature is enabled for your design and tells
you how many hardware monitor cores have been inserted automatically for you.

Running the Application on the Board

1. When the build is finished, right-click on the project in the Project Explorer and select Run
As→Trace Application (SDSoC Debugger).

NOTE: Be sure not to select Debug As because it will enable breakpoints. If your program breakpoints
during execution, the timing will not be accurate (because the software will stop, the hardware will
continue running, and the trace timer used for timestamping will continue to run).

When you click on the Trace Application (SDSoC Debugger) option, the GUI downloads the
bitstream to the board followed by the application ELF, starts the application, and then begins
collecting the trace data produced until the application exits. After the application finishes (or
any error in collecting the trace data occurs) the trace data collected is displayed.

NOTE: The application must exit successfully for trace data to be collected successfully. If the application
does not exit normally (i.e., hangs in hardware or software, or the Linux kernel crashes), the trace data
might not be collected correctly.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

47

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=47
www.xilinx.com

2. After the application exits, and all trace data is collected and displayed, you will see two main
areas in the trace visualization: the event textual listing on top (yellow highlighted border),
and the event timeline on the bottom (purple highlighted border). Both areas display the
same information. The top textual listing orders event by time in a descending order. The
bottom event timeline shows the multiple axes for each trace point in the design (either a
monitor core or a region of software that is being traced).

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

48

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=48
www.xilinx.com

The first thing you should notice is that the 10 iterations of the application are clearly visible
as repeated groups of events. Orange events are software events, green events are accelerator
events, and blue events are data transfer events.

3. If the names of the trace points in the event timeline are abbreviated with an ellipsis ("...") you
can expand the panel by clicking on the border between the grey on the left and the white on
the right (the border turns red when you hover the cursor over the right spot), and then
clicking and dragging to the right.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

49

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=49
www.xilinx.com

4. If you hover the cursor over one of the events, you will see a detailed tool-tip appear
displaying the detailed information about each trace. The example below shows the first
accelerator event, which corresponds to the start/stop of the mmult_accel function that we
chose to implement in hardware (via Vivado HLS). The start time is at 0.000002070 seconds
(2,070 ns) and the stop time is at 0.000038110 seconds (38,110 ns). It also shows the duration
of the event (which is the runtime of the accelerator in this case) as 0.000036040 seconds
(36,040 ns).

Tracing a Linux Project

You can learn how to create a new project, configure the project to enable the SDx trace feature,
build the project, run the application on the board, and view the trace data.

1. Create a new project.

a. Select File→New→Xilinx SDx Project.

b. In the New Project wizard, name the project mmult_linux_trace and click Next.

c. Select zc702 as the Hardware Platform. Click Next.

d. For System configuration select Linux SMP (Zynq 7000).

e. Click Next.

f. Select Matrix Multiplication as the template for this project and click Finish.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

50

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=50
www.xilinx.com

g. In the Project Explorer, expand the various folders by clicking on the triangle , then
open the mmult.cpp file under the src folder.

h. Change the number of tests symbol NUM_TESTS from 1024 to 10, then save and close
the file.

i. In the SDx Project Overview (in the mmult_linux_trace tab), notice that the
mmult_accel in the HW Functions section of the project overview is already marked for
implementation in hardware.

2. Configure the project to enable the Trace feature in the SDx IDE.

a. In the Project Overview window, click the checkbox for Enable Event Tracing under the
Options section.

3. Build the project.

a. Click the Build button to start building the project. (This will take a while.)

IMPORTANT: The build process might take approximately 30 to 45 minutes to complete. Instead of
building the project you can save time and instead use the pre-built project. (To minimize disk usage in
the SDx installation, the imported project might contain fewer files than a project you build, but it includes
the files required to complete the tutorial.) To import a pre-built project: select File→Import and then
select General→Existing Projects into Workspace and click Next. Click Select archive file and browse
to find the lab7b_mmult_trace_linux.zip file provided in the project files folder (<path to
install>/SDSoC/2016.4/docs/labs/lab7b_mmult_trace_linux.zip). Click Open. Click Finish.

After all the hardware functions are implemented in the Vivado HLS, and after the Vivado IP
Integrator design is created, you will see Inserted # hardware monitor cores displayed in
the console. This message validates that the trace feature is enabled for your design and tells
you how many hardware monitor cores have been inserted automatically for you.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

51

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=51
www.xilinx.com

X16927-050316

4. Run the application on the board.

a. When the build is finished, copy the files in the sd_card directory onto an SD card and
insert into the SD card socket on the board.

b. Connect an Ethernet cable to the board (connected to your network, or directly to the
PC).

c. Connect the USB/UART port to the PC and open a serial console by clicking the +
button on the SDx Terminal tab.

d. Connect the USB/JTAG port to the PC and boot Linux on the board.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

52

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=52
www.xilinx.com

e. Check the IP address of the zc702 board by looking at the SDx Terminal log.

f. From the Target Connections view, set up the Linux TCF Agent in the same manner as
in Using the Performance Estimation Flow With Linux.

g. Right-click on the project in the Project Explorer and select Run As→Trace Application
(SDSoC Debugger).

NOTE: Be sure not to select Debug As, because it will enable breakpoints. If your program
breakpoints during execution, the timing will not be accurate (because the software will stop, the
hardware will continue running, and the trace timer used for timestamping will continue to run).

When you click on the Trace Application (SDSoC Debugger) option, the GUI
downloads the ELF over the Ethernet TCF Agent connection, starts the application, and
then begins collecting the trace data produced until the application exits. After the
application finishes (or any error in collecting the trace data occurs) the trace data
collected is displayed.

NOTE: The application must exit successfully for trace data to be collected successfully. If the
application does not exit normally (i.e., hangs in hardware or software, or the Linux kernel crashes),
the trace data might not be collected correctly.

5. View the trace data.

a. After the application exits, all trace data is collected and displayed.

Viewing Traces

1. After you have run the application and collected the trace data, an archive of the trace is
created and stored in the build directory for that project in <build_config>/_sds/trace.

2. To open this trace archive, right click on it and select Import and Open AXI Trace.

The other files in the _sds/trace folder are metadata and sdsoc_trace.tcl. These files are
produced during the build. They are used to extract the trace data and create the trace
visualization archive. If you remove or change these files, you will not be able to collect the
trace data and will need to perform a Clean and Build to regenerate them.

Chapter 6: Debugging

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

53

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=53
www.xilinx.com

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips

References

These documents provide supplemental material useful with this guide:

1. SDx Environments Release Notes, Installation, and Licensing Guide (UG1238)
2. SDSoC Environment User Guide (UG1027)
3. SDSoC Environment Optimization Guide (UG1235)
4. SDSoC Environment Tutorial: Introduction (UG1028)
5. SDSoC Environment Platform Development Guide (UG1146)
6. SDSoC Development Environment web page
7. UltraFast Embedded Design Methodology Guide (UG1046)
8. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC User Guide

(UG850)
9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)
10. PetaLinux Tools Documentation: Workflow Tutorial (UG1156)
11. Vivado® Design Suite Documentation
12. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

Appendix A

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

54

http://www.xilinx.com/support.html
http://www.xilinx.com/support.html
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1238-sdx-rnil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1027-sdsoc-user-guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1235-sdsoc-optimization-guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1028-sdsoc-intro-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1146-sdsoc-platform-development.pdf
http://xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1156-petalinux-tools-workflow-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1118-vivado-creating-packaging-custom-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=54
www.xilinx.com

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials),
including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors
contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe
or for use in any application requiring fail-safe performance; you assume sole risk and liability
for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which
can be viewed at www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED
FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT
CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY CONCEPT OR
REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD
(“SAFETY DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS
THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES.
USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE
RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING
LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado,
Zynq, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by
permission by Khronos. PCI, PCIe and PCI Express are trademarks of PCI-SIG and used under
license. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

Send FeedbackSDSoC Environment Tutorial: Introduction
UG1028 (v2016.4) March 9, 2017 www.xilinx.com

55

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1028&Title=SDSoC%20Environment%20Tutorial%3A%20Introduction&releaseVersion=2016.4&docPage=55
www.xilinx.com

	SDSoC Environment Tutorial: Introduction
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: Flow Overview
	Lab 1: Introduction to the SDSoC Development Environment
	Learning Objectives
	Creating a New Project
	Marking Functions for Hardware Implementation
	Building a Design with Hardware Accelerators
	Running the Project
	Questions and Additional Exercises

	Ch. 3: Performance Estimation
	Lab 2: Performance Estimation
	Learning Objectives
	Setting Up the Board
	Setting up the Project for Performance Estimation
	Comparing Software and Hardware Performance
	Changing Scope of Overall Speedup Comparison
	Additional Exercises
	Using the Performance Estimation Flow With Linux

	Ch. 4: Application Code Optimization
	Lab 3: Optimize the Application Code
	Introduction to System Ports and DMA
	Learning Objectives
	Creating a New Project
	Specifying System Ports
	Error Reporting
	Additional Exercises
	Controlling Data Mover Selection
	Using malloc() instead of sds_alloc()
	Adding Pragmas to Control the Amount of Data Transferred

	Ch. 5: Accelerator Optimization
	Lab 4: Optimize the Accelerator Using Directives
	Lab 5: Task-Level Pipelining
	Task Pipelining
	Learning Objectives
	Task Pipelining in the Matrix Multiply Example

	Ch. 6: Debugging
	Lab 6: Debug
	Learning Objectives
	Setting Up the Board
	Creating a Standalone Project
	Setting up the Debug Configuration
	Running the Application
	Additional Exercises
	Stepping Through the Code
	Debugging Linux Applications

	Lab 7: Hardware Debug
	Tracing a Standalone or Bare-Metal Project
	Creating a New Project
	Configuring the Project to Enable the Trace Feature in the Options Section
	Building the Project
	Running the Application on the Board

	Tracing a Linux Project
	Viewing Traces

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Please Read: Important Legal Notices
	AUTOMOTIVE APPLICATIONS DISCLAIMER

